本节课是直线与圆的位置关系中的第三课时,是直线与圆位置关系中重点内容,是在学习了切线的性质和判定的基础上,继续对切线的性质的研究,是在垂径定理之后对圆的对称性又一次的认识。在了解切线性质的基础上,本节进一步研究了切线长定理,完善了圆的对称性的研究,获得了圆的运算的又一工具和新的方法,为我们证明线段或角相等提供了有力的理论依据,同学们应灵活运用,连接圆心和切点是我们解决切线长定理相关问题时常用的辅助线。
在教学过程中,我通过安排实践操作活动,使学生提高了探究的兴趣。首先由我提出要求,按照教材的思路,引导学生动手操作,探究发现结论然后进行严格的逻辑推理。学生操作并思考回答问题,我在学生回答问题的基础上进一步引导学生从中发现问题,让学生体会从具体情景和实践操作中发现条件,解决问题。通过设计问题情境,使学生提高解决问题的意识,通过自己画图尝试从中得出本节的'重点内容。
在本节课中主要关注的应该是:是否对系统知识点真正理解和灵活运用;对于问题的提出与思考,学生是否对探索线段和角的数量关系有兴趣。在本节课教学中,对本课的重点学习内容能组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结。尤其是切线长的基本图形研究环节,学生能充分利用已有的知识和新课内容结合,把切线长定理和圆的对称性紧密结合,体现了本节课知识点的工具性。
在练习题中,通过不同的思路和观察角度可以明显地得到不同的解法,而且其繁简程度一目了然。通过设置题目,帮助学生从具体的图形中提炼有效图形。另外通过设置变式题目,发展学生的发散思维及创新能力,激发学习兴趣,真正体验成功的快乐。
通过本节课,使我充分地认识到在教学中教师不能最后从自己的知识水平和以往的教学实践来实行,更应该注重学生的实际知识水平和能力状况。在今后的练习课中要更加注重难度的梯度和适当铺垫。在教学过程中,教师应把让学生探究发现知识放在首位,真正实现学生的主体地位,同时学生在探究中感受到了学习数学的乐趣,能在长期坚持的过程中有助于提高学生的教学素养,这是我们每一位老师都应该追求的。
1、教材分析
(1)知识结构
(2)重点、难点分析
重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.
难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.
2、教法建议
本节内容需要一个课时.
(1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析的基本图形;对重要的结论及时总结;
(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.
教学目标
1.理解切线长的概念,掌握;
2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.
3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.
教学重点:
是教学重点
教学难点:
的灵活运用是教学难点
教学过程设计:
(一)观察、猜想、证明,形成定理
1、切线长的概念.
如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长.
引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.
2、观察
利用电脑变动点P 的位置,观察图形的特征和各量之间的关系.
3、猜想
引导学生直观判断,猜想图中PA是否等于PB. PA=PB.
4、证明猜想,形成定理.
猜想是否正确。需要证明.
组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB.
想一想:根据图形,你还可以得到什么结论?
∠OPA=∠OPB(如图)等.
:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.
5、归纳:
把前面所学的切线的5条性质与一起归纳切线的性质
6、的基本图形研究
如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP于C
(1)写出图中所有的垂直关系;
(2)写出图中所有的全等三角形;
(3)写出图中所有的相似三角形;
(4)写出图中所有的等腰三角形.
说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.
(二)应用、归纳、反思
例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,
A和B是切点,BC是直径.
求证:AC∥OP.
分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线AB.
从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP ⊥AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法.
证法一.如图.连结AB.
PA,PB分别切⊙O于A,B
∴PA=PB∠APO=∠BPO
∴ OP ⊥AB
又∵BC为⊙O直径
∴AC⊥AB
∴AC∥OP (学生板书)
证法二.连结AB,交OP于D
PA,PB分别切⊙O于A、B
∴PA=PB∠APO=∠BPO
∴AD=BD
又∵BO=DO
∴OD是△ABC的中位线
∴AC∥OP
证法三.连结AB,设OP与AB弧交于点E
PA,PB分别切⊙O于A、B
∴PA=PB
∴ OP ⊥AB
∴ =
∴∠C=∠POB
∴AC∥OP
反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力.
第 1 2 页
切线长定理的教学反思
我所任教的初三(2)班是一个平行班,班内学生数学基础属于中等偏下,但是这个班的很多学生在课堂上都非常积极。有几个学生表现欲特强,很善于表达自己的思想。针对这种情况,我在课堂上会给更多的时间学生自己探索问题和解决问题。
我引入新课后,就让学生在自己尝试圆外一点画出⊙O的'切线。然后给学生充分的时间探讨图中所有的等量关系,5分钟后让学生自己根据图形总结出切线长定理。这样既培养学生归纳、整理知识的能力,促进了学生对知识体系的掌握,又极大地提高了学生自主学习的积极性。
讲解课本例题是个枯燥乏味的过程,怎么样盘活学生的兴奋点,让学生以高昂的激情投入到学习中去是棘手的问题。所以,教师在课堂中要想办法调节课堂气氛。我经常能找到适当的时机发动同学来讲解问题,逐渐形成了一种愉快、宽松、活跃的课堂氛围,使一节枯燥、乏味的讲授课变成了一节充满笑声的数学课。尽量使每一节数学课都能够在愉悦的课堂气氛中收到预期的效果。
但是,在学生总结完切线长定理后,我没有通过练习让学生学会知识的应用,
而是直接证明切线长定理的正确性。这样做,造成很多学生不能很好地应用知识解题。
教法建议:
本节内容需要两个课时。
(1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形,应该对重要的结论及时总结;
(2)在教学中,以“观察――猜想――证明――剖析――应用――归纳”为主线,开展在教师组织下,以学生为主体的活动式教学。
切线长定理教学方案
教学目的:
1.使学生理解切线长的概念,掌握切线长定理.
2.使学生学会运用切线长定理解有关问题.
3.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.
教学重点和难点:
切线长定理是教学的重点.切线长定理的灵活运用是教学的难点.
教学过程:
一、复习提间:
1.背诵切线的判定定理和性质定理.
2.过圆上一点可作圆的几条切线?过圆外一点呢?过圆内一点呢?
二、讲授新课:
1.切线长的概念(教师强调指出:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.).
教师先画出图形,图1,然后板书:已知P是⊙O外一点,PA、PB是⊙O的切线,A、B是切点.接着,直接告诉学生:切线PA、PB是直线,但在研究切线的一些特性时,需要用到线段PA、PB或者它们的长度(同学们在以后做题时将体会到)所以给图中的线段PA、PB的长起个名字叫做“切线长”.切线长的定义是:在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长.
2.切线长定理(讲清定理的条件和结论、证明方法,并要求学生课上基本记住).
教师引导学生继续观察,直观判断,猜想图中PA是否等于PB.学生容易想到PA=PB.图形可能存在着什么关系(线段PA=PB),能不能证明出线段PA=PB呢?我们先从已知条件考虑:由“PA、PB是⊙O的切线,A、B是切点”可以得出什么?(连结OA、OB则∠OAP=Rt∠,∠OBP=Rt∠,且OA=OB).再想一想能否证出PA=PB(连结OP得△OAP≌△OBP).通过三角形全等,不但证明了PA=PB,而且证出了∠OPA=∠OPB.
教师板书证明过程
证明:连结OA、OB、OP.PA、PB切⊙O于A、B
引导学生用文字语言叙述出切线长定理的具体内容:
切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的`夹角.
3.切线长定理的应用.
(1)例1如下图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AB于C.
(1)写出图中所有的垂直关系;
(2)写出图中所有的全等三角形;
(3)写出图中所有的相似三角形;
(4)写出图中所有的等腰三角形.
(通过此例引导学生把新旧知识联系起来,找出一些规律性的东西,便于运用,也有利于开阔学生的思路)
例2圆的外切四边形的两组对边的和相等.
引导学生画出图形,并根据下图写出已知和求证.最后师生共同完成证明过程.
例2是圆外切四边形的一个重要性质,要求学生记住结论.
三、小结:
本节主要学习了切线长定义和切线长定理.强调切线长和切线的概念不同.要注意切线长定理的灵活运用.要熟习添加不同的辅助线以后所得出的结果.
1、教材分析
(1)知识结构
(2)重点、难点分析
重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.
难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.
2、教法建议
本节内容需要一个课时.
(1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析的基本图形;对重要的结论及时总结;
(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.
教学目标
1.理解切线长的概念,掌握;
2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.
3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.
教学重点:
是教学重点
教学难点:
的灵活运用是教学难点
教学过程设计:
(一)观察、猜想、证明,形成定理
1、切线长的概念.
如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长.
引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的.两个端点分别是圆外一点和切点,可以度量.
2、观察
利用电脑变动点P的位置,观察图形的特征和各量之间的关系.
3、猜想
引导学生直观判断,猜想图中PA是否等于PB.PA=PB.
4、证明猜想,形成定理.
猜想是否正确。需要证明.
组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB.
想一想:根据图形,你还可以得到什么结论?
∠OPA=∠OPB(如图)等.
:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.
5、归纳:
把前面所学的切线的5条性质与一起归纳切线的性质
6、的基本图形研究
如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP于C
(1)写出图中所有的垂直关系;
(2)写出图中所有的全等三角形;
(3)写出图中所有的相似三角形;
(4)写出图中所有的等腰三角形.
说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.
(二)应用、归纳、反思
例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,
A和B是切点,BC是直径.
求证:AC∥OP.
分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线AB.
从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP⊥AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法.
证法一.如图.连结AB.
PA,PB分别切⊙O于A,B
∴PA=PB∠APO=∠BPO
∴OP⊥AB
又∵BC为⊙O直径
∴AC⊥AB
∴AC∥OP(学生板书)
证法二.连结AB,交OP于D
PA,PB分别切⊙O于A、B
∴PA=PB∠APO=∠BPO
∴AD=BD
又∵BO=DO
∴OD是△ABC的中位线
∴AC∥OP
证法三.连结AB,设OP与AB弧交于点E
PA,PB分别切⊙O于A、B
∴PA=PB
∴OP⊥AB
∴=
∴∠C=∠POB
∴AC∥OP
反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力.
例2、圆的外切四边形的两组对边的和相等.
(分析和解题略)
反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论.(2)圆内接四边形的性质:对角互补.
P120练习:
练习1填空
如图,已知⊙O的半径为3厘米,PO=6厘米,PA,PB分别切⊙O于A,B,则PA=_______,∠APB=________
练习2已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的内切圆分别和BC,AC,AB切于点D,E,F,求AF,AD和CE的长.
分析:设各切线长AF,BD和CE分别为x厘米,y厘米,z厘米.后列出关于x,y,z的方程组,解方程组便可求出结果.
(解略)
反思:解这个题时,除了要用三角形内切圆的概念和之外,还要用到解方程组的知识,是一道综合性较强的计算题.通过对本题的研究培养学生的综合应用知识的能力.
(三)小结
1、提出问题学生归纳
(1)这节课学习的具体内容;
(2)学习用的数学思想方法;
(3)应注意哪些概念之间的区别?
2、归纳基本图形的结论
3、学习了用代数方法解决几何问题的思想方法.
(四)作业
教材P131习题7.4A组1.(1),2,3,4.B组1题.
探究活动
图中找错
你能找出(图1)与(图2)的错误所在吗?
在图2中,P1A为⊙O1和⊙O3的切线、P1B为⊙O1和⊙O2的切线、P2C为⊙O2和⊙O3的切线.
提示:在图1中,连结PC、PD,则PC、PD都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点O应在圆上.
在图2中,设P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,则有
a=P1A=P1P3+P3A=P1P3+c①
c=P3C=P2P3+P3A=P2P3+b②
a=P1B=P1P2+P2B=P1P2+b③
将②代人①式得
a=P1P3+(P2P3+b)=P1P3+P2P3+b,
∴a-b=P1P3+P2P3
由③得a-b=P1P2得
∴P1P2=P2P3+P1P3
∴P1、P2、P3应重合,故图2是错误的。
数学教案-6.4切线长定理
6.4切线长定理
教学目的:
1.使学生理解切线长的概念,掌握切线长定理.
2.使学生学会运用切线长定理解有关问题.
3.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.
教学重点和难点:
切线长定理是教学的重点.切线长定理的灵活运用是教学的难点.
教学过程 :
一、复习提间:
1.背诵切线的'判定定理和性质定理.
2.过圆上一点可作圆的几条切线?过圆外一点呢?过圆内一点呢?
二、讲授新课:
1.切线长的概念(教师强调指出:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.).
初中数学第六册切线长定理教案
教学目的:
1、使学生理解切线长的概念,掌握切线长定理。
2、使学生学会运用切线长定理解有关问题。
3、通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想。
教学重点和难点:
切线长定理是教学的重点。切线长定理的灵活运用是教学的难点。
教学过程:
一、复习提间:
1、背诵切线的判定定理和性质定理。
2、过圆上一点可作圆的几条切线?过圆外一点呢?过圆内一点呢?
二、讲授新课:
1、切线长的概念(教师强调指出:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。)。
教师先画出图形,图1,然后板书:已知P是⊙O外一点,PA、PB是⊙O的切线,A、B是切点。接着,直接告诉学生:切线PA、PB是直线,但在研究切线的一些特性时,需要用到线段PA、PB或者它们的长度(同学们在以后做题时将体会到)所以给图中的线段PA、PB的长起个名字叫做“切线长”。切线长的定义是:在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长。
2、切线长定理(讲清定理的条件和结论、证明方法,并要求学生课上基本记住)。
教师 引导学生继续观察,直观判断,猜想图中PA是否等于PB。学生容易想到PA=PB。图形可能存在着什么关系(线段PA=PB),能不能证明出线段PA=PB呢?我们先从已知条件考虑:由“PA、PB是⊙O的切线,A、B是切点”可以得出什么?(连结OA、OB则∠OAP=Rt∠,∠OBP=Rt∠,且OA=OB)。再想一想能否证出PA=PB(连结OP得△OAP≌△OBP)。通过三角形全等,不但证明了PA=PB,而且证出了∠OPA=∠OPB。
教师板书证明过程
证明:连结OA、OB、OP。PA、PB切⊙O于A、B
引导学生用文字语言叙述出切线长定理的具体内容:
切线长定理 从圆外一点引圆的两条切线,它们的`切线长相等,圆心和这一点的连线平分两条切线的夹角。
3、切线长定理的应用。
(1) 例1 如下图,PA,PB是⊙O的两条切线,A,B为切点。直线OP交⊙O于点D,E,交AB于C。
(1)写出图中所有的垂直关系;
(2)写出图中所有的全等三角形;
(3)写出图中所有的相似三角形;
(4)写出图中所有的等腰三角形。
(通过此例引导学生把新旧知识联系起来,找出一些规律性的东西,便于运用,也有利于开阔学生的思路)
例2 圆的外切四边形的两组对边的和相等。
引导学生画出图形,并根据下图写出已知和求证。最后师生共同完成证明过程。
例2是圆外切四边形的一个重要性质,要求学生记住结论。
三、小结:
本节主要学习了切线长定义和切线长定理。 强调切线长和切线的概念不同。要注意切线长定理的灵活运用。要熟习添加不同的辅助线以后所得出的结果。
学习目标
1、了解切线长的概念.
2、理解切线长定理,并能熟练运用切线长定理进行解题和证明(重点)
一、自学新知:
自学教材P96---P98,思考下列问题
1、通过自学教材P98页的探究你知道什么是切线长吗?切线长和切线有区别吗?区别在哪里?
2、通过自学教材P98页的探究可得切线长定理:从圆外一点可以引圆的两条切线,它们的_________相等,这一点和圆心的连线平分__________________.
3、通过自学教材P98页的探究你知道如何证明切线长定理吗?
如图,已知PA、PB是⊙O的两条切线.
求证:PA=PB,∠OPA=∠OPB.
证明:__________________ ____________________________________
____________________________________ ____________________________________
____________________________________ www.czsx.com.cn
4、若PO与圆相分别交于C、D,连接AB于PO交于点E,
(1)写出图中相等的.线段;
(2)写出图中相等的角;
(3)写出图中相等的弧;
(4)写出图中互相垂直的线段;
(5)写出图中的全等三角形。
二、当堂检测
1、如图,PA,PB,分别切⊙O于点A,B,∠P=70°,
∠C等于 。
2、如图,PA,PB是⊙O的切线,A,B为切点 ∠OAB=30°.(1)求∠APB的度数;(2)当OA=3
时,求AP的长.
1
3、如图在△ABC中,圆I与边BC、CA、AB分别相切于点
D、E、F,∠B=60°,∠C=70°,求∠EDF
B
C
作业设计
一、选择题.
1.如图1,PA、PB分别切圆O于A、B两点,C为劣弧AB上一点,∠
APB=30°,则∠ACB=( ).
A.60° B.75° C.105° D.120°
BP
(1) 《切线长定理及三角形的内切圆》导学案 (2)
2.圆外一点P,PA、PB分别切⊙O于A、B,C为优弧AB上一点,若∠
ACB=a,则∠APB=( )
A.180°-a B.90°-a C.90°+a D.180°-2a
3.如图2,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,?已知PA=7cm,则△PCD的周长等于_________.
4.如图所示,EB、EC是⊙O的两条切线,B、C是切点,A、D是⊙O上两点,? 如果∠E=46°,∠DCF=32°,求∠A的度数.
E
2
切割线
切割线(cross line):在航空物探测量中,由于受飞行高度、空间位置,以及仪器特性变化影响,各测线测量难以在同一水平,而且观测误差往往较大,因此需布设垂直于测线方向的切割线,供各测线间调平和全区测量质检。切割线间距可等于或为测线间距的2~10倍,并应尽量选在磁场相对平静和地形高差变化较小地段。
6月20日下午我和安阳实验中学高二(17)班的同学共同完成了本节课的课堂实录,感悟反思如下:
本节课的教学重点是“使学生掌握二项式定理的形成过程”,在教学中,采用“问题DD探究”的教学模式,把整个课堂分为呈现问题、联系组合问题、总结规律、应用规律四个阶段。让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程。
本节课的难点是用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律。在教学中,设置了对多项式乘法的再认识,引导学生运用计数原理来解决项数问题,明确每一项的特征,为后面二项展开式的推导作铺垫。再以为对象进行探究,引导学生用计数原理进行再思考,分析各项以及项的个数,这也为推导的展开式提供了一种方法,使学生在后续的学习过程中有“法”可依。
教材的探求过程将归纳推理与演绎推理有机结合起来,是培养学生数学探究能力的极好载体。教学过程中,让学生充分体会到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现解决一般问题的方法。教学中我特别注重区分系数与二项式系数及运用通项意识凡涉及到展开式的项及其系数等问题,常是先写出其通项公式,然后再据题意进行求解。
例1展开式中第三项的是______。
第三项的系数是______
第三项的二项式系数是______
例2(2)求展开式中x3的系数,则______。
解析:由通项公式,得,
由,解得。
本节课的亮点:
引入组合问题,为归纳项数,项得次数,项的形式及项的系数作了很好的铺垫,数学思想、方法和数学文化得到了较好的体现。引导学生运用计数原理来解决特征,为后续学习作准备。二项式系数的对称美,“特殊出发、发现规律、猜想结论、”的科学方法,都带给学生积极的情感体验和无尽的思考。
不足之处:
学生在数学课堂中的参与度不够。我认为,像这样面对新学生的录像课,难以操作。因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错。否则,对于有一定难度的数学课,在课堂上先自主、合作、探究,再来答疑、解惑,就没有足够的时间了。即使可以操作,自主、合作、探究也是走走过场,没有实际效果。语文与数学有不同特点,在数学课堂上如何让学生讨论、思考值得深入研究。
总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性。重视学生的参与过程,问题引导,师生互动。重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯。
汾口中学 叶轶群
《二项式定理》这节内容我采用以知识点 “问题串”的形式引导学生自主探究的教学方法,在循序渐进中以小问题带动大问题,环环相扣,将知识点落实。而学生在自主讨论中,初步认识二项式定理是初中多项式乘法的继续,初步掌握展开式的规律,充分而有效地训练了学生的思维。
整节课在学生讨论探究中进行,通过一连串层层递进的问题,引导学生掌握展开式形成的规律,比如:(问题1:请在多项式中圈出能得到(a+b)4展开式中的项a4 b0的单项式a:(a+b)4 =(a+b)(a+b)(a+b) (a+b)--------- 问题2:请在多项式中用不同颜色的笔标出得到(a+b)4展开式中的项a3 b的单项式a和b
(a+b)4 =(a+b)(a+b)(a+b) (a+b)
(a+b)4 =(a+b)(a+b)(a+b) (a+b)
(a+b)4 =(a+b)(a+b)(a+b) (a+b)
(a+b)4 =(a+b)(a+b)(a+b) (a+b)------------ 问题3:请你用组合的`观点来探究(a+b)4 =(a+b)(a+b)(a+b) (a+b)展开式中的项a2 b2的系数) 以上三个问题由浅入深,由简单到复杂,引导学生体验(a+b)4展开式中的特殊项得来的过程,通过学生自己用笔动手圈注和问题“你是如何做到标注时不重复无遗漏的?”的引导,让学生自己体验的到这些特殊的项需要两个步骤:先取b再取a,进而可以轻而易举的把对特殊项的探究的方法转移到计数原理上来。然后马上引
导学生完成问题4:类比以上探究项a4b0和a3b 及a2b2构成规律的方法, 请你写出 (a+b)4 二项展开式的每一项(把展开式按照a的降幂,b的升幂进行排列)(a+b)4 = ____ 。
在这个过程中非常具有挑战性问题的引入能使学生产生新奇感,激发了学生的学习兴趣和积极性.进一步把这一研究方法推广到展开式的每一项,从而得到(a+b)4二项展开式,又把这一问题往前推进了一步,引导学生找出展开式的通项,进而推广到一般情形。
教学中我特别注重运用通项意识,凡涉及到展开式的项及其系数等问题,常是先写出其通项公式,然后再据题意进行求解。但也有意外出现,对于二项式定理的逆运用,上课过程中重视不够,以为学生在推导展开式的同时也能够推导它的逆公式,所以在上课过程中一笔带过,导致作业中的问题比较多,基于此,在另一个班级的教学中,我决定把这个知识点跟展开式的推导融为一体来落实知识点。
本节课的亮点:
1、从“特殊出发、发现规律、猜想结论、逻辑证明”的科学方法,带给学生积极的情感体验和无尽的思考.数学思想、方法和数学文化得到了较好的体现.
2、课堂小结顺其自然地引导学生把握知识之间的内在本质联系,引导学生用扩展、深化等方式提出新问题,并用问题链引向课外或后续课程。
3、掌握二项式定理和二项展开式的通项公式,并能用它们解决与二项展开式有关的简单问题。教材的探求过程将归纳推理与演绎推理
有机结合起来,教学过程中,学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发他们发现一般性问题的解决方法
4、本节课教学,我采用“问题DD探究”的教学模式,以“问题链”组织课堂教学,让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程.
本节课不足之处:
1、我认为在师生互动环节中再多一些效果会更好。但是我认为这样面对学生的展示课,难以操作.因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错.否则,对于有一定难度的数学课。
2、本节课教学过程中还不够生动有趣。正因为二项式定理在初等数学中与其他内容联系较少,所以教材上教法就显得呆板,单调,课本上先给出一个(a+b)4用组合知识来求展开式的系数的例子.然后推广到一般形式,再用数学归纳法证明,因为证明写得很长,上课时的板书几乎占了整个黑板,所以课必然上得累赘,学生必然感到被动.那么多的算式学生看都不及细看,记也感到吃力,又怎能发挥主体作用?
总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯。
《正弦定理 》教学反思
本节课是“正弦定理”教学的第二节课,其主要任务是通过对正弦定理的进一步理解,明确它在“已知三角形的两边及一边所对的角解三角形”方面的应用和运用正弦定理的变式来求三角形中的角和判断三角形的形状。
在知识目标方面:通过创设适宜的数学情境,引导鼓励学生大胆地提出问题、引导学生对所提的问题进行分析、整理,筛选出有价值的问题,注意启发学生揭示问题的数学实质,将提问推向深入。通过问题的提出、解题方法的探索、到问题的解决、方法的总结、及练习题中方法的应用,都能紧抓公式及公式的变式,运用从特殊到一般、再从一般到特殊的思想方法达成知识目标。通过练习及六个变式问题调动学生的学习热情,进而采用“正弦定理”、“大边对大角”、“三角形内角和定理”、“数形结合”等知识与方法有效突破本节课的教学难点。使学生明白这一类数学问题该怎样解,让学生做到“学会数学,会学数学”
在能力目标方面:通过例题、练习及六个变式问题,培养学生观察、归纳、概括新知识的能力; 通过“故意出错”,让学生“质疑”、“找错”、“改错”,从而使学生的思维具有批判性,优化他们的思维品质; 通过课后练习及课后思考,进一步培养学生的数学意识,解决数学问题的能力。
在情感态度与价值观方面:本节课也很注重对学生非智力因素的培养,注重情感交流与情感的建立与培养。并在教学过程中做到:与学生真诚相处、平等交流;依据自己的个人特点采取适当的'方法与技巧,注重充分发挥教师的个人人格魅力,而非千篇 一律的“柔声细语”;能借助信息技术及其它手段,营造一种氛围,一种情境,通过“课前音乐背景”的设置,“课堂上的掌声鼓励”“形体语言与语言艺术”的运用等,力争营造一种愉快、轻松的氛围,创建一个有助于师生,生生思维交流的“情感场”,使数学教学更具有生命力,感染力。使学生在感悟数学的过程中感受数学的魅力,体验数学产生的美感与幸福感。
通过这节课的学习,不仅复习巩固了旧知识,使学生掌握了新的有用的知识,体会联系、发展等辩证观点,而且培养了学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。
首先感谢市教育局各位专家领导给予高度评价,并提出宝贵意见和建议。你们的肯定将激励我在教育事业上勇往直前,我会走得更好,走的更远。你们的建议会让我不断的反省自己,改正自己,完善自己。反思后则奋进,存在问题就整改,发现问题则深思,找到经验就升华。我要牢记你们所说的话“应该向专家型教师学习,向这个方向努力!”
上班已有六年时间,带了两轮的高中数学,在知识方面我严格要求自己,勤思多问,“教然后而知困”,不断发现陌生的自己,促使自己拜师求教,书海寻宝,不断的提高自己的专业素质。在教学技能方面也是严格按照学校的要求多听课、多请教、多反思;备好每一堂课,上好每一堂课;课后做好反思,注意课堂中的每一个细节;同时也大胆的尝试和实践一些新的教学手段、思路和方法,形成和完善自己独有的教学风格。
学习的过程是新旧知识互相碰撞的过程,旧知识不断被新知识所补充所完善。通过学习者不断的思维,才能把新的知识内化,来完善原有的知识结构。对于数学教学而言,教会学生思维才是根本,无论教师的讲解多么精彩,思维活动过程是任何人无法替代的。
在本节课的教学设计中,我很好的把握了重点和难点,通过简单例子反复强调二项展开式的特点和通项公式的特点及功能,学生的理解很轻松。对于例题的选择也是结合近几年的高考特点由浅入深,总体的设计还比较满意。但在上课的过程中忽视了一个很重要的因素――学生。我班是一个文科普班,数学基础不是很好,虽然是复习课,但仍有部分学生跟没学过一样,我在讲课过程中语速过快,一部分学生没能跟上。因此在今后的教学中,一定要多关注学生的原有知识水平和个性差异,灵活机动地随机处理课堂上的问题,把学生出现的错误当成是一种珍贵的教学资源,并加以合理利用。同时也要认真观察学生的微妙变化和反应情况,随机的调整教课的速度,让每个学生都能消化吸收。今后我要在讲课中多下功夫,多收集好的教学方法,教案;多积累典型的例题;认真研究考试大纲,把握教学的重点和难点,上好每一堂课。在其他细节方面,我将以最快的速度去改进、完善。
最后再次感谢各位领导!我将争取早日成为一名优秀的数学教师。
本节是“正弦定理”定理的`第一节,在备课中有两个问题需要精心设计.一个是问题的引入,一个是定理的证明.通过两个实际问题引入,让学生体会为什么要学习这节课,从学生的“最近发展区”入手进行设计,寻求解决问题的方法.具体的思路就是从解决课本的实际问题入手展开,将问题一般化导出三角形中的边角关系——正弦定理.因此,做好“正弦定理”的教学既能复习巩固旧知识,也能让学生掌握新的有用的知识,有效提高学生解决问题的能力。
1.在教学过程中,我注重引导学生的思维发生,发展,让学生体会数学问题是如何解决的,给学生解决问题的一般思路。从学生熟悉的直角三角形边角关系,把锐角三角形和钝角三角形的问题也转化为直角三角形的性,从而得到解决,并渗透了分类讨论思想和数形结合思想等思想。
2.在教学中我恰当地利用多媒体技术,是突破教学难点的一个重要手段.利用《几何画板》探究比值的值,由动到静,取得了很好的效果,加深了学生的印象.
3.由于设计的内容比较的多,教学时间的超时,这说明我自己对学生情况的把握不够准确到位,致使教学过程中时间的分配不够适当,教学语言不够精简,今后我一定避免此类问题,争取更大的进步。