小学数学《平行四边形的面积》的教案(小学数学《平行四边形的面积》教案)

作为一名专为他人授业解惑的人民教师,总归要编写教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。我们该怎么去写教学设计呢?为您精心收集了小学数学《平行四边形的面积》的教案【优秀9篇】,希望可以启发、帮助到同学们。

《平行四边形的面积》的优秀教案 篇一

教学内容:课本第73-74页练习十七第4-9题

教学要求

1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。

2、养成良好的审题习惯,树立责任感。

教学重点:能比较熟练地运用平行四边形的计算公式,解答有关的应用题。

教具准备:口算卡片。

教学过程

一、复习

1、平行四边形的面积计算公式是什么?

2、口算:

4.9÷0.75.4+2.64×0.250.87-0.49

530+2703.5×0.2542-986÷12

3、求平行四边形的面积。

(1)底12米,高是7米;(2)高13分米,底长6分米;

(3)底2.5厘米,高4厘米;(4)底0.24分米,高0.5分米

4、出示课题。

二、新授

1、补充例题

一块平行四边形的麦地底长125米,高24米,它的面积是多少平方米?

(1)独立列式后,指名口述,教师板书。

(2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?

让学生议一议,然后自己列式解答,最后评讲。

(3)如果问题改为:“改种花生,一年可收花生900千克,这块地平均每公顷可收花生多少千克?”又怎么想?

与上题比较,从数量关系上看,什么是相同的?什么是不同的?

让学生自己列式。

辨析:老师也列了三个算式,到底哪个对呢?帮个忙!

A900×(125×24÷10000)

B900÷(125×24)

C900÷(125×24÷10000)

2、小结(略)

三、巩固练习

练习十七第6、7题

四、课堂作业

练习十七第8、9题

⑧有一块平行四边形的菜地,底是27.6米,高是15米,每平方米收油菜6千克。这块地收多少千克油菜?

⑨有一块平行四边形的麦田,底是250米,高是78米,共收小麦13650千克。这块麦田有多少公顷?平均每公顷收小麦多少公顷?

板书设计:

平行四边形面积的计算

小学数学《平行四边形的面积》的教案 篇二

教学内容:

教科书数学第八册第22~26页

教学目标:

1.通过观察操作认识平行四边形的特征,使学生在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。

2.经历探索平行四边形面积计算公式的过程,使学生初步认识转化的思考方法在研究平行四边形面积时的运用。

3.培养观察、比较、推理和概括能力,渗透转化思想的空间观念。

教学重难点:

探索平行四边形面积计算公式的推导过程。

教具准备:

1.课件

2.教师准备一个平行四边形的纸片。

3.学生准备好学具

教学过程:

活动一:认识平行四边形的特征。

信息窗1,学生观察。

师:你发现了什么信息?你想提一个什么数学问题?学生以小组为单位讨论。

(生交流讨论的情况)

平行四边形的特征:对边平行且相等,对角相等。

师:什么叫平行四边形?(两组对边分别平行的四边形叫做平行四边形。)

师:先领学生复习平行四边形的底和高。再让学生指出平行四边形的底,指出它的高来。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)

活动二:学习平行四边形面积的计算公式。

师:解决1号虾池的面积是多少。

我们已经知道1号虾池的形状是平行四边形的,要求1号虾池的面积,就是求平行四边形的面积,那么怎样求平行四边形的面积?请大家猜测一下。

学生活动:用手中的学具操作一下。

师:现在交流你们想出的方法。

师:同学们有各自的猜想,到底谁的对呢?用什么办法来验证。

师:哪个小组来汇报一下你们是怎样来验证的 ,你们的结论是什么?

提问:它们的面积怎么样?平行四边形的底和长方形的长怎么样?平行四边形的高和长方形的宽呢?

启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。

通过操作总结平行四边形面积的计算公式。

(1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?让学生拿出准备好的平行四边形进行剪拼。(学生剪拼时,教师巡视。)然后指名到前边演示。

(2)教师示范平行四边形转化成长方形的过程。

刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在演示。

教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

引导学生总结平行四边形面积计算公式。

这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)

那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)

教学用字母表示平行四边形的面积公式。

板书:S=ah,

S=ah,或者S=ah。

应用总结出的面积公式计算平行四边形的面积。

师:现在来求:1号虾池的面积是多少?

学生列式:90X60=5400(平方米)

活动三:

解决2号虾池能放养多少尾虾苗?

交流答案,交流解题思路。

活动四:巩固练习

自主练习的1、2、5

活动五:

课堂小结:

这节课我们共同研究了什么?

怎样求平行四边形的面积?

平行四边形的面积计算公式是怎样推导出来的?

《平行四边形的面积》的教学设计 篇三

教学内容:教科书第12—13页的例1、例2、例3,“试一试”和“练一练”,第14页的练习二。

教学目标:

1、知识目标:使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积公式,并能应

用公式正确计算平行四边形的面积。

2、能力目标:使学生经历观察、操作、测量、填表、讨论、分析、归纳等数学活动过程,进一步体会“等积变形”的思想方法。

3、情感目标:培养空间观念,发展初步的推理能力。

教学过程:

一、复习导入。

1、说出下面每个图形的名称。(电脑出示)

2、在这几个图形中,你会求哪些图形的面积呢?

3、大家想不想知道平行四边形的面积怎么求?今天我们一起来研究“平行四边形面积的计算”。(揭示课题)

二、探究新知。

1、教学例1。

(1)出示例l中的第一组图形。

提出要求:这儿有两个图形,这两个图形的面积相等吗?在小组里说一说你准备怎样比较这两个图形的面积。学生分组活动后组织交流。

对学生的交流作适当点评,使学生明白两种不同的比较方法都是可以的:即数方格比较大小或把左边的图形转化后与右边的图形进行比较。

(2)出示例l中的第二组图形。

提出要求:你能用刚才的方法比较这两个图形的大小吗?

学生分组活动后组织交流,在学生的交流中,教师适当强调“转化”的方法。

(3)小结:把不熟悉的图形转化成学过的图形,并用学过的知识解决问题,这是数学上一种很重要的方法——转化。这种方法在数学学习中经常要用到。

2、教学例2。

(1)出示画在方格纸上的平行四边形。提问:你能想办法把图中的平行四边形转化成长方形吗?

(2)学生操作,教师巡视指导。

(3)学生交流操作情况。

提出要求:谁愿意把你的转化方法说给大家听听?(让学生用实物投影演示剪、拼过程)

提问:有没有不同的剪、拼方法? (继续请学生演示)

教师用课件演示各种转化方法,进行小结。

(4)讨论:刚才大家把平行四边形转化成长方形时,都是沿着平行四边形的一条高剪的。大家为什么要沿着高剪开?

启发学生在讨论中理解:沿着高剪开,能使拼成的图形出现直角,从而符合长方形的特征。

(5)小结:沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。

3、教学例3。

(1)提问:是不是任意一个平行四边形都能转化成长方形?平行四边形转化成长方形后,它的面积大小有没有变?与原来的平行四边形之间有什么联系?

(2)操作:请大家从教科书第123页上选一个平行四边形剪下来,先把它转化成长方形,并求出面积,再填写下表:

转化成的长方形 平行四边形

长(cm) 宽(cm) 面积(c㎡) 底(cm) 高(cm) 面积(c㎡)

(3)小组讨论:

①转化成的长方形与平行四边形面积相等吗?

②长方形的长和宽与平行四边形的底和高有什么关系?

③根据,长方形的面积公式,怎样求平行四边形的面积?

(4)反馈、交流,抽象出面积公式。

根据学生的讨论进行如.下的板书:

因为 长方形的面积二长×宽

所以 平行四边形的面积二底×高

(5)用字母表示公式。

如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么你能用字母写出平行四边形的面积公式吗?

结合学生的回答,板书:

S=ah

(6)指导完成“试一试”。

先让学生根据题意独立解答,再通过指名板演和评点,明确应用公式求平行四边形面积一般要有两个条件,即底和高。

三、巩固深化。

1、指导完成“练一练”。先让学生独立计算,再让学生说说每个平行四边形的底和高分别是多少,计算时应用了什么公式。

2、指导完成练习二第1题。

(1)明确要求,鼓励学生尝试操作。

(2)讨论:长方形的长、宽、面积各是多少?要使画出的平行四边形面积与长方形相等,它的底和高可以分别是多少?

(3)学生继续操作后展示作品。引导学生对展示的平行四边形进行判断,是否符合题目的要求。

3、指导完成练习二第2题。

先让学生指出每个平行四边形的底和高,再让学生各自测量计算。

提醒学生:测量的结果取整厘米数。

4.指导完成练习二第3、4两题。

先让学生独立解答,再通过交流说说自己解决问题的思路。

5、指导完成练习二第5题。

(1)同桌两人分别按要求做出长12厘米,宽7厘米的长方形。一个长方形不动,另一个长方形拉成平行四边形,平放在桌上。

(2)指导观察、思考。

要求学生认真观察做成的长方形和用长方形拉成的平行四边形,想一想,它们的周长相等吗?为什么?面积呢?

(3)指导测量、计算,验证猜想。

(4)连续拉动长方形,启发思考面积的变化有什么特点。

四、全课小结。

通过今天的学习活动,你学会了什么?有哪些收获?

教学后记

通过平移转化成长方形计算面积, 使学生了解用数方格方法计算面积时不满整格的都按半格计算,同时初步学会用这方法估计并计算不规则物体表面的面积。 使学生体会平移后图形的面积不变,感受转化的策略。体会平移后图形的面积不变。

平行四边形面积教案 篇四

一、教学目标:

1、理解和掌握平行四边形的面积计算公式。

2、会计算平行四边形的面积。

二、教学重点:

理解公式并正确计算平行四边形的面积。

三、教学难点:

理解平行四边形的面积公式的推导过程。

四、学具准备:平行四边形纸

五、教学过程:

(一)、板书课题,揭示目标

同学们请看大屏幕,这两个花坛哪一个大呢?比较它们的大小得知道它们的面积,我们只学过长方形的面积,哪位同学能说一下?(教师板书)

平行四边形的面积我们还不会计算,(出示)小精灵提示我们先用数方格的方法试一试。(切换)

一个方格代表12,不满一格的都按半格计算。

谁来数一数两个图形的面积各是多少?(出示)

平行四边形的底和高各是多少?(出示)

长方形的长和宽各是多少?(出示)

(出示)你发现了什么?

同学们今天这节课我们就来学习“平行四边形的面积”(板书课题)

本节课我们的学习目标是:“1、理解和掌握平行四边形的面积计算公式。 2、会计算平行四边形的面积。”(出示)

要想完成学习目标,还要靠同学们认真自学,请看自学指导。

(二)出示自学指导

1、想一想,如何把平行四边形剪拼成长方形?以小组为单位剪一剪,拼一拼。

2、观察拼成的长方形和原来的。平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的面积有什么关系?想一想平行四边形的面积应该怎样计算?

(6分钟后,比一比谁能正确计算出平行四边形的面积。相信你一定行!)

现在开始自学,注意看书的姿势,用剪刀时要注意安全!

(三)、学生自学

1、学生看书自学,教师巡视,督促每个学生都能认真自学。

2、检测学生自学效果

师:自学时间到,谁来演示一下你是怎样把平行四边形剪拼成长方形的?(抽生到前面演示)

观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的面积有什么关系?

想一想平行四边形的面积应该怎样计算?(师板书面积公式)

教师小结(展示动画):

同时教师口述:通过割补的方法,我们可清楚地看到,任何一个平行四边形都可以转化为长方形,而且长方形的长和宽恰好等于平行四边形的底和高。所以,平行四边形的面积=底×高。

(边口述,边板书。)教师讲述:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成:S=a×h,简写成:S=ah。(板书)

下面就用你所学的知识去解决一下实际问题。

出示检测题

出示:平行四边形花坛的底是 6,高是 4,它的面积是多少?

抽2名学生上台板演,其他学生写在练习本上,教师巡视,搜集学生检测中出现的错误。

(四)、后教

1、学生自由更正

在学生完成检测后,看黑板上学生的板演,注意做题的步骤,如发现错误和有不同见解的同学,上台更正。

2、讨论归纳

问:做题的步骤是什么?第一步写什么?其中的a表示什么?h表示什么?s呢?

板书:写公式——代入数——计算(单位)——写答话。

(五)、当堂训练

1、

2、

(六)、全课总结

这节课,你有什么收获?

六、板书设计

平行四边形的面积

长方形的面积=长×宽

平行四边形的面积=底×高

S=ah

写公式——代入数——计算(单位)——写答话

5

平行四边形的面积教学设计 篇五

设计说明

在本节课的教学中主要关注学生空间观念的发展,进一步扎实几何知识的学习。现将本节课的教学设计作以下简要说明:

1、动手实践,多维探究。

数学知识是抽象的,而小学生的思维是以具体形象思维为主的,显然,数学学科的特点与小学生的思维特点是矛盾的。要解决这个矛盾,提高小学数学课堂的教学效率,就要直观演示和动手操作。重视动手操作是发展学生思维,培养学生数学能力最有效的途径之一。教学时先出示一个与长方形面积相等的平行四边形,让学生认真观察,用数方格的方法数出它们的面积,并填写表格,引导学生观察表格,通过讨论发现:长方形的长与平行四边形的底相等,长方形的宽与平行四边形的高相等,并且两个图形的面积相等。这一实践操作实际上是让学生了解长方形的长和宽与平行四边形的底和高之间的内在联系。将平行四边形转化成与它面积相等的图形来计算它的面积,学生积极讨论后再动手操作,用割补法探究平行四边形的面积计算公式。

2、分层运用新知,逐步理解内化。

新知需要及时组织学生巩固运用,才能达到理解内化的效果。本着“重基础、验能力、拓思维”的原则设计练习题。整个习题设计部分,题量不要太大,但要涵盖本节课的所有知识点,题目呈现方式多样,吸引学生的注意力,使学生面对挑战时充满信心,激发学生的学习兴趣,引发思考,发展思维。同时,练习题的设计要遵循由易到难的原则,层层深入,这样可以有效地培养学生的创新意识和解决问题的能力。

课前准备

教师准备 PPT课件 学情检测卡 课堂活动卡 平行四边形卡片 剪刀

学生准备 练习卡片 平行四边形卡片 剪刀

教学过程

⊙创设情境,导入新课

1、常用的面积单位有哪些?

2、出示教材87页情境图,观察这两个花坛,猜测一下,哪一个花坛的面积大呢?假如这个长方形花坛的长是6 m,宽是4 m,怎样计算它的面积呢?

根据“长方形的面积=长×宽”,得出长方形花坛的面积是24 m2,平行四边形的面积计算公式我们还没有学过,所以不能算出平行四边形花坛的面积,我们能不能把平行四边形转化成我们学过的、会计算面积的图形呢?本节课我们就一起学平行四边形面积的计算。

(板书课题:平行四边形的面积)

设计意图:创设情境,寻找解题思路。用长方形的面积引入新课,使学生感受平面图形之间的联系,为平行四边形的面积计算公式的推导做好铺垫。

⊙操作实践,探究新知

一、数方格法。

1、复习旧知。

师:以前我们用数方格的方法求长方形的面积。今天我们也用同样的方法求平行四边形的面积。

(出示方格纸)

师:这是什么图形?(长方形)如果一个方格代表1 m2,那么这个长方形的面积是多少?(24 m2)

师:这是什么图形?(平行四边形)如果一个方格代表1 m2,自己在方格纸上数一数,这个平行四边形的面积是多少?

师:方格纸上不满一格的都按半格计算。说出数方格的结果,并说一说你是怎样数的。

2、填写并观察表格。

设计意图:由长方形可用数方格的方法求出面积,推导出平行四边形也可以用这种方法求出面积,学生很有兴趣去数,且从中发现平行四边形与长方形之间的联系,为下一步探究提供了思路。 3.小结:如果长方形的长和宽分别等于平行四边形的底和高,那么它们的面积相等。

二、割补法。

1、讨论:你们准备怎样将平行四边形转化成长方形呢?

预设 生:沿着平行四边形的一条高剪开,重新拼一下,可以拼成长方形。

2、组织学生操作,教师巡视指导。

3、教师示范平行四边形转化成长方形的过程。

(1)先沿着平行四边形的高剪下左边的直角三角形。

(2)左手按住剩下的梯形部分,把剪下的直角三角形沿着底边慢慢向右移动,也叫沿着底边平移,直到直角三角形的斜边与平行四边形右侧的边重合为止。

4、观察思考。(在剪拼成的长方形左面放一个与原来一样的平行四边形,便于比较)

(1)这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积相比,有没有变化?为什么?

(2)这个长方形的长与原来的平行四边形的底有什么关系?

(3)这个长方形的宽与原来的平行四边形的高有什么关系?

(4)思考后填空。

①原来的平行四边形的底与长方形的( )相等。

②原来的平行四边形的( )与长方形的( )相等。

③这两个图形的( )相等。

平行四边形的面积教学设计 篇六

教学目标:

1、经历平行四边形面积公式的推导过程,体验成功的快乐,形成数学的经验、

2、知道平行四边形的面积公式、

3、会求平行四边形的面积、

4、利用教师的情感特征调动学生学习的积极性和主动性、

教学重点:

1、平行四边形面积公式的推导过程、

2、应用平行四边形的面积公式进行计算、

教学难点:

平行四边形面积公式的推导过程、

教学关键:

转化前后平行四边形与长方形面积及各部分间的对应关系、

教学过程:

一、启动导入:

1、电脑出示长方形图形:

指出:图中一个方格代表1平方厘米,请你求出方格中长方形的面积、

指生口答

问:你是怎么做的?

②出示:

这还是长方形吗?你能求出它的面积吗?(生:18平方厘米、)

生小组内先交流一下,指生反馈

得出两种方法:

(1)数格子法

(2)将它转化成一个长方形,再求出它的面积。师重点评讲第二种方法。

③出示: 这个图形,你会求它的面积吗?(生可能说:我把右面的正方形切割下来,移到左右,就变成了一个长方形、再根据长方形的面积公式长×宽就可以求出这个图形的面积、(电脑课件演示转化过程)、

2、刚才, 这两个图在求面积时有什么共同的地方?(都是把不规则图形转化成长方形,求出了它的面积)

把不规则图形转化成规则图形,把没学过面积计算的图形变成学过面积计算图形的过程,就叫做转化。

刚才,在转化的过程中,谁在变,谁不变?(形状在变,面积不变。)

3、(出示一个平行四边形)引入:这个平行四边形的面积你会求吗?今天我们就来研究平行四边形的面积。(板书课题)

二、主动探索:

1、引导探索:不规则的图形可以转化成长方形来求出它的面积。平行四边形能不能也用转化的思想求出它的面积呢?请大家以小组为单位合作转化,转化后讨论。

电脑出示:

⑴请同学们拿出自已准备的平行四边形纸片,以四人小组为单位,想法转化成学过面积计算的图形求出平行四边形的面积、

转化后思考:

①转化成怎样的图形?你是如何转化的?(如何画线)

②通过转化你发现了什么?

③说明了什么?学生分四人小组讨论,教师点拨、

学生汇报。

学生可能出现的情况:

问:你是怎么剪开的?是随便剪的吗?(是沿高剪的)

生:我们把平行四边形沿高剪开,变成了长方形。转化的过程中,长方形的面积既没有增加,也没有减少,长方形的面积与平行四边形的面积相等。说明求出了长方形的面积,也就求出了平行四边形的面积。

小结:尽快我们采用了不同的方法,都是把平行四边形转化为长方形。并且知道转化前后面积的大小没有变化。下面以四人小组为单位仔细观察转化前后平行四边形与平行四边形各部分间的对应关系,讨论推导出平行四边形的面积计算公式。

2、推导公式:

(1)请同学们对照转化前后两个图形各个部分之间的对应关系,以四人小组为单位,小组合作推导出平行四边形的面积计算公式、

四人小组讨论推导平行四边形的面积,教师点拨。

学生汇报:长方形是由平行四边形的面积转化而来的。转化前后面积的大小没有变化,所以长方形的面积等于平行四边形的面积,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高。长方形的面积是长×宽,所以,平行四边形的面积=底×高。

(2)电脑课件演示平行四边形转化为长方形的过程。结合图重点讲解平行四边形面积公式的推导。

平行四边形的面积教案 篇七

教学内容

人教版《义务教育课程标准实验教科书数学》五年级上册第80、81页的内容。

教学目标

1. 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

2. 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

教学重点:

掌握平行四边的面积计算公式,并能正确运用。

教学难点:

平行四边形面积计算公式的推导。

教学过程:

一、情境激趣

1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。

2.师:为了纪念这个有意义的时刻,我们学校的小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢!

3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。

提问:如果比较这些图形的大小,要知道它们的什么?哪些图形的面积是我们已经学过的?怎样求?

4.比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?(引导学生说出可以用数方格的方法。)

二、自主探究

1.数方格比较两个图形面积的大小。

(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

(2)学生用数方格的方法计算两个图形的面积并填写书上80页表格。

(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

(4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找到一种方法来计算平行四边形的面积?

(5)观察表格,你发现了什么?

(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。

(7)提出猜想:平行四边形的面积=底×高

2.操作验证。

(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的。同学互相交流自己的方法。

(2)学生分组操作,教师巡视指导。

(3)学生展示不同的方法把平行四边形变成长方形。

(4)利用课件演示把平行四边形变成长方形过程。

(5)观察并思考以下两个问题:

A.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?

(6)交流反馈,引导学生得出:

A.形状变了,面积没变。

B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

3.教学例1。

(1)(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?

(2)学生独立完成并反馈答案。

三、看书质疑

四、课堂总结

通过这节课的学习,你有哪些收获?(学生自由回答。)

五、巩固运用

1.练习十五第1题,让学生独立完成后反馈答案。

2.你会计算下面平行四边形的面积吗?

3.你能想办法求出下面平行四边形的面积吗?

4.练习十五第3题。

六、全课小结(略)

数学《平行四边形的面积》教案 篇八

教学目的:

1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积。

2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。

3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

4、培养学生自主学习的能力。

教学重点:掌握平行四边形面积公式。

教学难点:平行四边形面积公式的推导过程。

教具、学具准备

1、多媒体计算机及课件;

2、投影仪;

3、硬纸板做成的可拉动的长方形框架;

4、每个学生5张平行四边形硬纸片及剪刀一把。

教学过程():

一、复习导入:

1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)

2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)

3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。

二、质疑引新:

1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?

2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?

3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。

4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习,平行四边形面积的计算。(板书课题:平行四边形面积的计算)

三、引导探求:

(一)、复习铺垫:

1、什么图形是平行四边形呢?

2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。

3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。

(二)、推导公式:

1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?

2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。

4、学生实验操作,教师巡视指导。

5、学生交流实验情况:

⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)

⑵、有没有不同的剪拼方法?(继续请同学演示)。

⑶、微机演示各种转化方法。

6、归纳总结规律:

沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:

⑴、平行四边形剪拼成长方形后,什么变了?什么没变?

⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

⑶、剪样成的图形面积怎样计算?得出:

因为:平行四边形的面积=长方形的面积=长×宽=底×高

所以:平行四边形的面积=底×高

(板书平行四边形面积推导过程)

7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。

8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。

四、巩固练习:

1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)

2、练习:

(1)(微机显示例一)求平行四边形的面积

(2)判断题(微机显示,强调高是底边上的高)

(3)比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)

(4)思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。

五、问答总结:

1、通过这节课的学习,你学到了哪些知识?

2、平行四边形面积的计算公式是什么?

3、平行四边形面积公式是如何推导得出的?

六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1

平行四边形的面积教案 篇九

一、教学目标

(一)知识教学点

1.了解;方程算术解法与代数解法的区别。

2.掌握:代数解法解简易方程。

(二)能力训练点

1.通过代数解法解简易方程的 学习 使学生认识问题头脑不僵化,培养其创造性思维的能力。

2.通过代数法解简易方程进一步培养学生运算能力和逻辑思维能力。

(三)德育渗透点

1.培养学生实事求是的科学态度,用发展的眼光看问题的辩证唯物主义思想。

2.渗透化“未知”为“已知”的化归思想。

(四)美育渗透点

通过用新的方法解简易方程,使学生初步领略 数学 中的方法美。

二、学法引导

1.教学方法:引导发现法。注意教学中民主意识和学生的主体作用的体现。

2.学生学法:识记→练习反馈

三、重点、难点、疑点及解决办法

1.重点:代数解法解简易方程。

2.难点:解方程时准确把握两边都加上(或减去)、乘以(或除以)同一适当的数。

3.疑点:代数解法解简易方程的依据。

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、自制胶片。

六、师生互动活动设计

教师创设情境,学生解决问题。教师介绍新的方法,学生反复练习。

七、教学步骤

(一)创设情境,复习导入

(出示投影1)

引例:班上有37名同学,分成人数相等的两队进行拔河比赛,恰好余3人当裁判员,每个队有多少人?

师:该问题如何解决呢?请同学们考虑好后写在练习本上.

学生活动:解答问题,一个学生板演.

师生共同订正,对照板演学生的做法,师问:有无不同解法?

学生活动:回答问题,一个学生板演,其他学生比较两种解法.

问;这两种解法有什么不同呢?

学生活动:积极思索,回答问题.(一是列算式的解法,二是列方程的解法).

师:很好.为了叙述问题方便,我们分别把这两种解法叫做算术解法和代数解法. 小学 学过的应用题可用算术方法也可用代数方法解.有时算术方法简便,有时代数方法简便,但是随着 学习 的逐步展开,遇到的问题越来越复杂,使用代数解法的优越性将会体现的越来越充分,因此,在初中代数课上,将把方程的知识作为一个重要的内容来 学习 .当然,在开始 学习 方程时,还是要从简单的方程入手,即简易方程.引出课题.

[板书]1.5简易方程

(二)探索新知,讲授新课

师:谈到方程,同学们并不陌生,你能说明什么叫方程吗?

学生活动:踊跃举手,回答问题。

[板书] 含有未知数的等式叫方程

接问:你还知道关于方程的其他概念吗?

学生活动:积极思考并回答。

[板书] 方程的解;解方程

追问:能再具体些吗?即什么叫方程的解?什么叫解方程?并举例说明.学生活动:互相讨论后回答.(使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫解方程,例如方程: 是方程的解,求 的过程叫解方程.)

师:很好.怎样解方程呢?

例如 解方程

学生活动:一个学生回答,师板书,并要求学生说出根据。

解:第一步 ,(把 看作一个数,根据一个加数等于和减去另一个数)

第二步 (根据一个因数等于积除以另一个因数)

师:好!这是 小学 学的解方程的方法。在初中代数课上,我们要从另一角度来解,还以上边这个方程为例。

[板书]

解:第一步看作方程两边都减去9,得

第二步看作方程两边都除以3,得

问:这种解法合理吗?

学生活动:相互讨论达成共识(合理。因把 代入方程 ,左边=右边,所以 是方程的解)

【教法说明】先复习 小学 有关方程的几个概念和解法,再提代数解法,形成对比,使学生认识到同一问题可从不同角度去考虑,即培养了发散思维。正是因为认识问题的不同侧面,导致学生感到疑惑,这时让学生自己去检验新方法的合理性,不但可消除疑虑,而且还有助于发展学生的创造能力。

师:以前的方法只能解很简单的方程,而后者则可以解较复杂的方程,因此更为重要。为了更好的理解和熟悉这种解法,我们共同做例1。

(三)尝试反馈,巩固练习

例1 解方程

问:你认为第一步方程两边应加上(或减去)什么数最合适?为什么?

学生活动:思考并回答.(师板书)

问:你认为第二步方程两边应乘以(或除以)什么数最合适?为什么?

学生活动:思考并回答(师板书)

解:方程两边都加上5,得

方程两边都乘以2,得

x =32

问:这个结果正确吗?请同学们自己检验.

学生活动:练习本上检验并回答问题.(正确)

师:这种新方法解方程时,第一步目的是什么?第二步目的是什么?从而确定出该加上(或减去)怎样的数,该乘以(或除以)怎样的数更合适.

学生活动:回答这两个问题.

【教法说明】虽然解方程的过程由教师板书,但整个思路是由学生形成的,使新方法在学生头脑中越来越清晰,直到真正认识并掌握它,这样也体现了学生的主体性,由“学会”型向“会学”型转化,对培养学生的思维能力很有帮助.

师:上题在我们共同努力下得以解决,下面看你们自己的表现怎样?

例2? 解方程 。

学生活动:在练习本上做,一个学生板演.

师生共同订正.

师:这里虽不要求同学们检验,但今后希望同学们养成自我检查的良好习惯.

【教法说明】通过例2的教学训练学生的判断能力及运算能力,树立矛盾转化思想.

(四)变式训练,培养能力

(出示投影2)

1.(口答)解下列方程

(1) ;  (2) ;

2.判断,并说明理由

(1) 不是方程( )

(2) 与 的解都是 ( )

(3)不同方程的'解一定不同( )

4.求 使 的值等于27。

学生活动:1、2题口答,3、4题在练习本上书写,可互相讨论,3、4题师巡回指导。

【教法说明】1题让学生困难同学回答,增强自信心;2题澄清模糊认识,可充分讨论,让学生各抒已见;3题较1题稍复杂,一是让学生体会新解法的优越性,二是培养学生观察分析解决问题的能力;4题其实也是解方程,目的是开阔学生思路,培养学生勇于探索、大胆求异的创新精神。

(五)归纳小结

(由学生归纳)

1.按照新方法解方程,一般采用下面两点:

(1)方程两边都加上(或减去)同一适当的数;

(2)方程两边都乘以(或除以)同一适当的数。

2.为了保证运算准确,养成检验的习惯。

八、随堂练习

1.选择题

(1)在(1) ;(2) ;(3) ;(4) 中方程有( )

A.1个 B.2个 C.3个 D.4个

(2)2是( )方程的解

A. B.

C. D.

2.解方程

3.求 ,使 与 互为倒数。

九、布置作业

(一)必做题:课本第31页A组1.(2)(4)、 2.(1)(3)(5)

(二)选做题:思考课本B组1、2。

十、 板书设计

附:1.5? 简易方程

随堂练习答案

1.B? C.  2. 3.

作业答案

探究活动

甲、乙二人从相距30m的两地同向而行,甲每秒走7m,乙每秒走6.5m,如果甲先出发1秒钟后,乙才出发,求甲出发后几秒钟追上乙?

解法(-)设甲出发后 秒追上乙,则甲走的路程为 m,乙比甲晚1秒钟出发,乙少走1秒钟,此时,乙走的路程为 m,甲追上乙表示甲比乙多走30m。根据题意列出方程是:

解得 (秒)

答:甲出发后47秒追上乙.

解法(二)设甲出发后 秒追上乙,甲先走1秒钟,甲先走了 m,这样甲追上己只需多走 (m).这时甲、乙二人都走了( )秒,甲走的路程为 m,乙走的路程为 m,乙比甲走的路程少 (m),根据题意列出方程是:

解得 (秒)

答:甲出发后47秒追上乙.

解法(三)设已出发后 秒,甲追上乙,因为甲先走1秒,所以甲走了 ,乙走了 秒,甲走的路程比已走的路程多30m,依据此等量关系列出方程为:

解得 秒

甲走的时间为 (秒)

答:甲出发后47秒追上乙.

热门教案

学诗词

学名句