《乘除法两步应用题》教学设计
教学过程:
一、复习:
1.口算:
5×7= 45÷9= 63÷7= 18÷9=
32÷4= 56÷7= 27÷9= 6×8=
72÷9= 8×3= 35÷7= 64÷8=
9×4= 24÷3= 54÷9= 21÷7=
2.把32平均分成8份,每一份是多少?
3.56里面有几个7?
二、探究新知
1.出示第59页的例题4(课件)
(1)先认真观察第一幅图的画面,用自己的话说一说画面的内容。
(2)再认真观察第二幅图的画面,“我们这么多人,要坐多少辆呢?”这里的.“我们”是指什么人?
(3)把这两幅画面连起来编一道应用题。(小组合作)
(4)小组讨论:应该如何解决这一道题?
(5)汇报讨论结果。
重点强调:应用题解答完后,要记住写单位名称和答语。
(6)独立思考:怎样列综合算式?然后在练习本上完成。
三、练习
完成教科书第60页练习十三的第1题
(1)学生先自己看图,口头编应用题
(2)学生独立分析列式解答,教师鼓励学生列综合算式
(3)全班讲评(讲评时要学生说出每一步算式的意思)
完成教科书第60页练习十三第2题
(1)让学生自己看图,口头编应用题,
(2)说出这一道题目的已知条件和问题,
(3)独立分析列式解答
(4)教师讲评,讲评时要学生说出每一步算式的意思,为什么要添上括号?
四、全课总结:
通过这节课的学习,你想说些什么?
分数乘除法应用题教学设计
您现在正在阅读的《分数乘除法应用题》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《分数乘除法应用题》教学设计教材分析:分数连除和乘除复合应用题这节课的教学是在前面学过的分数乘除一步应用题的基础上发展起来的分数连除应用题和乘除复合应用题,所以在设计复习导入部分作了全面的练习和知识点的概括。本节课的重点是:找准题中的单位1和数量关系。难点是:掌握两类应用题的结构特点,明确数量关系。
在设计授新课部分,为了避免学生觉得枯燥,我谈话引入本校情况,并对两道例题做了更改。在实施教学过程中,注意到适当的引和放,以培养学生分析问题和解答问题的能力。
本节课计算是次,分析列式是主,所以在设计练兵场1、2时,我做了明确要求,男生做1题,女生做2题,这样学生实际完成了1道题,但在同桌互查和集体订正的过程中就自然列出了另一题的算式。
巩固练习阶段,我分成了两个层次,一是基础练习。设计时题目要求只列式不计算,是为了达到节时高效的目的。二是变式和拓展练习。题目中只有1个单位1,目的在于和前面的题目和解法形成对比,使学生养成认真分析数量关系的好习惯。
小结时,师引导学生说内容,说方法,并强调喜欢哪种用哪种,目的在于让学生在课后优化算法。当然在教学的实施过程中还有许多不足,还望各位老师批评指正,以提高我的教学水平。
教学目标:
1、掌握分数连除应用题和乘除复合应用题的结构特点与数量关系,学会分析解答相关应用题。
2、培养学生分析问题和解答问题的能力。
教学重点:找准每一步的单位1和数量关系。
教学难点:掌握两类应用题的结构特点,找准数量关系。
教学过程:
一、复习导入
1、口算天天练。(课件示题,指名口答)
渗透个别算式的知识点。
2、看谁先找到题中的单位1。指名口答
3、分析分率句,口头列式解答。
教师小结:题目中已知了分率和单位1的量,求分率的对应量要用乘法计算;题目中已知了分率和分率的对应量,求单位1的量,要用除法计算。
4、谈话引入新课。
东华小学的`校园文化生活是丰富的,我们学校也不错。课前老师还对我校部分兴趣小组的人数情况作了了解,来一起看。(指名读题)
问:在这道题中,有几个单位1?这两个单位1的量是已知还是未知?
这就是今天我们要学习的分数乘除法应用题的其中一个类型。(板书课题)
二、新授课
您现在正在阅读的《分数乘除法应用题》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《分数乘除法应用题》教学设计1、教学例4。
1.)师引导学生分析题目中的数量关系。
2.)我们还可以用线段图来表示题中的数量关系,生说画法,师画线段图。
3.)师引导,学生确定每一步的算法。
师小结:刚才我们用连除的方法解答了题目中有两个单位1并且都未知时,求其中一个单位1的量的这类问题。
4.)你愿意根据题中的数量关系用列方程的方法解答这道题吗?(指名板演)
2、完成练兵场1中的题目。(要求男生做第1题,女生做第2题,然后同桌交换检查,最后集体订正。)
更让老师感兴趣的是:我校舞蹈队人数、英语组人数及我班学生总数三者有个巧合。想知道吗?
3、教学例5。
1.)出示例题,齐读题目。
2.)师引导学生分析题目中的数量关系。
3.)我们怎样用线段图来表示题中的数量关系呢?师引导学生完成线段图。
4.)师引导,学生确定每一步的算法。
师小结:刚才我们用乘除混合计算的方法解答了题目中有两个单位1并且一个已知,一个未知时,求其中未知的一个单位1的量的这类问题。
5.)谁还会用列方程的方法解答这道题?(指名板演)
4、完成练兵场1中的题目。集体订正。
三、巩固练习
1、基本练习。只列式,不计算
要求先独立做,然后集体订正。
下面几道题和前面的稍稍有点不同,敢挑战吗?
2、变式练习。
3、拓展练习。
四、小结
今天我们学习了题目中含有两个单位1的应用题,解答这类题我们可以借助线段图分析题中的数量关系,可以用算术方法的连除或乘除混合运算的方法计算,还可以用列方程的方法解答。你喜欢哪种就用哪种。
五、布置作业
练习十一的2、3、6题。
分数乘除法应用题教学设计
教学目标:
(1)使学生掌握分数除法应用题的结构及数量关系,学会分析解答分数法除应用题,发展学生思维能力。
(2)引导学生充分自主探索,分组讨论,观察分析和比较,在自主学习中探究,在探究中发展提高。
(3)通过过师生交流总结,让学生获得学习数学的成功。让学生养成认真审题、积极思考的良好学习习惯。
教学重点:能用方程正确解答分数除法应用题。
教学难点:确定单位“1”、分析数量关系
教学过程:
以前我们学过了分数应用题,这节课我们继续研究分数应用题,(板书:分数应用题)。
没学新课之前老师要考考大家,可以吗?(生答略)
1.说说下面各题中应该把哪个看作单位“1”,数量之间相等关系怎样?
①吃了一筐白菜的2/5。
②一本书的价格正好是一支钢笔价格的2/5。
③小明体内的水分占体重的4/5。
2.小明的体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?
把答案讲给同学们听,说一说你怎样想的。
1、教学例1
同学们已经掌握了解了分数乘法应用题的方法那么同学们想不想利用这个方法去解答分数除法应用题呢?这节课我们就来研究分数除法应用题怎样解答好不好?
①小明体内所含的水分是28千克,占体重的4/5,他的体重是多少千克?
仔细观察看一看有没有什么发现?
独立做,做完组内交流,组长分好工,做好记录,看看哪个小组方法多,你们小组准备由谁发言,用几句话表达自己小组的方法。
小结:用方程解比较容易,因为它的解题思路与我们以前学的分数乘法应用题的思路是一致的,也是根据题中的叙述的条件明确把谁看作单位1,然后根据一个数乘分数的意义列出等量关系式,由于单位1是未知的,要设成x,列出方程进行解答。这也是我们本节课所要掌握的已知一个数的'几分之几是多少求这个数的应用题用方程解的方法。
2、教学例2。
师:同学们研究出了解答分数除法应用题的方法,那么你愿意不愿意用它帮助一下遇到困难的小明呢?
②小明买一条裤子是75元,是一件上衣的2/3,一件上衣是多少钱?
(看题)(独立完成后说说自己的想法)
谁愿意帮助小明?在本上写出你的答案,谁想把你的答案写在黑板上?解:设上衣的价格为x元。
x×2/3=75
x=75÷2/3
x=75×3/2
x=112。5
说一下你的想法
3、比较例1、例2有什么不同。
师:例1、例2虽然存在着不同指出,但是解题方法是类似的。我们再做两道题看看是不是这样。(投影出示做一做1、2)。请两名同学在投影片上做,其他同学在本上做,做后请同学叙述怎样做的,为什么这样做。
小结:通过以上的学习,同学们觉得分数应用题在解答时的关键是什么?
四、练习
1、判断下列说法是否正确。
①白兔只数是黑兔只数的2/5,单位“1”是黑兔,数量关系式:黑兔的只数×2/5=白兔的只数。
②黑兔只数的2/5是白兔的只数,白兔的只数是单位“1”()。
③苹果树占果园总面积的4/7,果园总面积是单位“1”,苹果树占地面积×4/7=果园的面积。()
2、①林庄果园占地面积是840公顷,苹果树果园总面积的3/4,苹果树占地多少公顷?
②林庄苹果树占地360公顷,占果园总面积的3/4,果园总面积有多少公顷?
3、新风小学去年植树320棵,相当于今年植树棵数的4/5。今年共植树多少棵?
五、总结全课
师:好了,同学们,这节课我们学习了列方程来解已知一个数的几分之几是多少,求这个数的应用题,学好这部分知识对于提高我们解决问题的能力,发展我们的思维有着重要的作用,同学们表现得非常好,希望你们继续努力。
《分数乘除法应用题》教学设计
教材分析:分数连除和乘除复合应用题”这节课的教学是在前面学过的分数乘除一步应用题的基础上发展起来的分数连除应用题和乘除复合应用题,所以在设计复习导入部分作了全面的练习和知识点的概括。本节课的重点是:找准题中的单位“1”和数量关系。难点是:掌握两类应用题的结构特点,明确数量关系。
在设计“授新课”部分,为了避免学生觉得枯燥,我谈话引入本校情况,并对两道例题做了更改。在实施教学过程中,注意到适当的“引”和“放”,以培养学生分析问题和解答问题的能力。
本节课计算是次,分析列式是主,所以在设计“练兵场1、2”时,我做了明确要求,男生做1题,女生做2题,这样学生实际完成了1道题,但在同桌互查和集体订正的过程中就自然列出了另一题的算式。
巩固练习阶段,我分成了两个层次,一是基础练习。设计时题目要求只列式不计算,是为了达到节时高效的目的。二是变式和拓展练习。题目中只有1个单位“1”,目的在于和前面的题目和解法形成对比,使学生养成认真分析数量关系的好习惯。
小结时,师引导学生说内容,说方法,并强调喜欢哪种用哪种,目的在于让学生在课后“优化算法”。当然在教学的实施过程中还有许多不足,还望各位老师批评指正,以提高我的教学水平。
教学目标:1、掌握分数连除应用题和乘除复合应用题的结构特点与数量关系,学会分析解答相关应用题。
2、培养学生分析问题和解答问题的能力。
教学重点:找准每一步的单位“1”和数量关系。
教学难点:掌握两类应用题的结构特点,找准数量关系。
教学过程:
一、复习导入
1、口算天天练。(课件示题,指名口答)
渗透个别算式的知识点。
2、“看谁先找到题中的单位‘‘1‘‘。”指名口答
3、分析分率句,口头列式解答。
教师小结:题目中已知了分率和单位“1”的'量,求分率的对应量要用乘法计算;题目中已知了分率和分率的对应量,求单位“1”的量,要用除法计算。
4、谈话引入新课。
东华小学的校园文化生活是丰富的,我们学校也不错。课前老师还对我校部分兴趣小组的人数情况作了了解,来一起看。(指名读题)
问:在这道题中,有几个单位“1”?这两个单位“1”的量是已知还是未知?
这就是今天我们要学习的分数乘除法应用题的其中一个类型。(板书课题)
二、新授课
1、教学例4。
1.)师引导学生分析题目中的数量关系。
2.)我们还可以用线段图来表示题中的数量关系,生说画法,师画线段图。
3.)师引导,学生确定每一步的算法。
师小结:刚才我们用连除的方法解答了题目中有两个单位“1”并且都未知时,求其中一个单位“1”的量的这类问题。
4.)你愿意根据题中的数量关系用列方程的方法解答这道题吗?(指名板演)
2、完成“练兵场1”中的题目。(要求男生做第1题,女生做第2题,然后同桌交换检查,最后集体订正。)
更让老师感兴趣的是:我校舞蹈队人数、英语组人数及我班学生总数三者有个巧合。想知道吗?
3、教学例5。
1.)出示例题,齐读题目。
2.)师引导学生分析题目中的数量关系。
3.)我们怎样用线段图来表示题中的数量关系呢?师引导学生完成线段图。
4.)师引导,学生确定每一步的算法。
师小结:刚才我们用乘除混合计算的方法解答了题目中有两个单位“1”并且一个已知,一个未知时,求其中未知的一个单位“1”的量的这类问题。
5.)谁还会用列方程的方法解答这道题?(指名板演)
4、完成“练兵场1”中的题目。集体订正。
三、巩固练习
1、基本练习。只列式,不计算
要求先独立做,然后集体订正。
下面几道题和前面的稍稍有点不同,敢挑战吗?
2、变式练习。
3、拓展练习。
四、小结
今天我们学习了题目中含有两个单位“1”的应用题,解答这类题我们可以借助线段图分析题中的数量关系,可以用算术方法的连除或乘除混合运算的方法计算,还可以用列方程的方法解答。你喜欢哪种就用哪种。
五、布置作业
练习十一的2、3、6题。
教学目标
1.通过对比,掌握三类题的相同点和不同点。
2.加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力,为学习较复杂应用题打下基础。
教学重点和难点
掌握三类题的相同点和不同点,巩固解题方法,培养学生分析问题、解决问题的能力。
教学过程
(一)复习准备
教师谈话:前一阶段我们学习了三种类型的分数应用题。解决这三类题的关键是什么?
(抓住含有分率的句子,找准单位“1”。)
1.出示投影,找出单位“1”。
2.(板书)选择条件回答问题,下列算式各求的是什么?
15÷30。(求男生是女生的几分之几,女为单位“1”)
3.提问:求一个数是另一个数的几分之几用什么方法?求一个数的几分之几是多少用什么方法?已知一个数的几分之几是多少,求这个数,用什么方法?
导入:为了更进一步了解每一类的特点,巩固解题方法,请同学们和老师一起来做下面一组练习。
(二)讲授新课
例3 先分析数量关系,再解答。
(1)池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
提问:鹅的只数是鸭的几分之几,应该把谁看做单位“1”?
根据学生的回答,老师画图。
提问:求鹅是鸭的几分之几用什么方法?为什么?
(用除法。因为求一个数的几倍用除法,根据分数和除法的关系,求一个数是另一个数的几分之几也用除法。)
提问:怎么求?谁做除数?
(鸭为单位“1”,鸭的只数做除数。)
老师将第(1)题进行改编。
谁是单位“1”?(鸭的只数为单位“1”。)
这句话是什么意思?(把鸭的只数看作单位“1”,把它平均分成3份,鹅的只数占其中的一份。)老师根据学生的回答画图。
什么?(因为单位“1”的数量是已知的,根据乘法意义,求一个数的几
答:有鹅4只。
师:你能把第二题改编成一道“已知一个数的几分之几是多少,求这个数”的题吗?(学生讨论,根据学生讨论结果出示第3题。)
提问:(边提问边根据学生回答画图。)
这道题已知什么?求什么?(指导学生画图)
这道题可以用什么方法解答?
(板书)①方程法:
解 设鸭为x只。
②算术法:
答:池塘里有12只鸭。
找出三道题的相同点和不同点。
1.观察三道题的已知条件和未知条件,有什么相同点和不同点?
相同点:都有3个数量,鸭的只数,鹅的只数,鹅是鸭的几分之几。
不同点:已知和未知条件不同。
2.在解题思路上有什么相同点?有什么不同点?
不同点:根据已知、未知的变化确定用什么方法解答。第(1)题,求分率用除法;第(2)题知道单位“1”的量,求单位“1”的几分之几用乘法;第(3)题知道分率和分率的对应量,求单位“1”的量用除法或方程。
练一练
选择条件列出算式。
每一道题谁为单位“1”?是已知还是未知?解这三类题有什么规律?
(三)巩固练习
(投影)
1.看图编题并列式解答。
2.根据分数三类应用题,补充问题,并列式解答。
(2)一条路长15千米,修了5千米,________。
3.选择正确的答案。
(2)一条水渠长120米,修了90米,修了的占全长的几分之几?
(四)课堂总结
这节课我们进行了三类题的对比练习。求一个数是另一个数的几分之几是多少,用什么方法。求一个数的几分之几是多少,用什么方法?已知一个数的几分之几是多少,求这个数,用什么方法?解决这三类题的关键是什么?(找准单位“1”,确定题的类型,从而选择正确的方法。)
(五)布置作业
(略)
课堂教学设计说明
本教案把分数的三类应用题放在了一起进行教学,这样,既突出了每一类题的特点及解题思路,又通过对比,使学生真正掌握了这三类题的异同点。充分发挥了教师优化知识结构,紧扣教材,沟通事物间内在联系的能力。巩固练习形式多样,无论是选择条件列式还是补充问题列式答题以及看图编题,目的都是培养学生对三类题的辨析能力,促进学生对知识的理解和掌握,使学生的思维得到进一步发展。
通过本节课的教学以及课下的练习,为学生学习较复杂的分数应用题,打下了坚实的基础。
教学目标
1.进一步加深对分数乘、除法应用题的数量关系和内在联系的认识.明确它们的相同点和不同点.
2.掌握分数乘、除法应用题的分析、解答方法.
教学重点
训练学生分析分数应用题的数量关系,明确分数乘除法应用题的相同点和不同点.
教学难点
准确判断单位“1”,正确地解答分数应用题.
教学步骤
一、铺垫孕伏
(一)导入:我们已经学过了三种分数乘、除法应用题(板书:分数乘、除法应用题),请同学们想一想都是哪三种?解答分数乘、除法应用题的关键是什么?
(二)判断单位“1”.
1.鹅的只数是鸭的 .
2.甲的 是乙.
3.乙是甲的 .
4.男生人数的 相当于女生.
5.小齿轮的齿数占大齿轮的 .
(三)列式计算.
1.4是12的几分之几?
2.12的 是多少?
3.一个数的 是4,求这个数.
二、探究新知
(一)教学例3第(1)题
池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
1.读题并找出已知条件和问题
2.提问:应把谁看作单位“1”?是根据题中哪句话判断的?
3.画图.
4.列式解答
答:鹅的只数是鸭的 .
(二)教学例3第(2)、(3)题.
池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?
池塘里有4只鹅,正好是鸭的只数的 ,池塘里有多少只鸭?
1.画图理解题意
2.列式解答
3.集体订正
(三)小结
这三道题有什么相同点和不同点?解题关键是什么?
1.结构上
相同点:都有3个数量,即鸭的只数,鹅的只数,鹅是鸭的几分之几;
不同点:已知和未知不一样.
2.解题思路上
相同点:都要首先弄清谁作标准,把谁看作单位“1”;
不同点:根据已知、未知的变化,确定不同的解答方法.
解题关键是:正确分析题中的数量关系,明确谁作单位“1”.
教师:分数乘除法应用题,在结构、解题思路及方法上,既有联系又有区别.我们在解
答这类应用题时,一定要认真正确分析题中的数量关系,准确判断谁作单位“1”.这样才能提高解答分数应用题的能力.
三、全课小结
这节课我们进一步学习了分数乘、除法应用题,并进行了比较.解答时,要正确地判断单位“1”,从而确定解答方法.
四、巩固练习
(一)商店运来红毛衣25包,蓝毛衣15包,蓝毛衣的包数是红毛衣的几分之几?
(二)商店运来红毛衣25包,运来蓝毛衣的包数是红毛衣的 .商店运来蓝毛衣多少包?
(三)商店运来蓝毛衣15包,正好是运来红毛衣包数的 .商店运来红毛衣多少包?
五、课后作业
(一)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?
(二)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?
(三)农场有小牛40头,是大牛头数的 .农场有大牛多少头?
六、板书设计
分数乘、除法应用题对比
1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
4÷12=
答:鹅的只数是鸭的 .
2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?
12× =4(只)
答:池塘里有4只鹅.
3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?
4÷ =12(只)
答:池塘里有12只鸭.
教学目标
1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.
2.能正确熟练地解答稍复杂的分数应用题.
3.培养学生分析问题和解决问题的能力.
教学重点
明确分数乘、除法应用题的联系和区别.
教学难点
明确分数乘、除法应用题的联系和区别.
教学过程
一、启发谈话,激发兴趣.
在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答
时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.
二、学习新知
(一)出示例8的4个小题.
1.学校有20个足球,篮球比足球多 ,篮球有多少个?
2.学校有20个足球,足球比篮球多 ,篮球有多少个?
3.学校有20个足球,篮球比足球少 ,篮球有多少个?
4.学校有20个足球,足球比篮球少 ,篮球有多少个?
(二)学生试做.
1.第一题
解法(一)
解法(二)
2.第二题
解:设篮球有 个.
解法(一)
解法(二)
解法(三)
3.第三题
解法(一)
解法(二)
4.第四题
解:设篮球 个.
解法(一)
解法(二)
解法(三)
(三)比较区别
1.比较1、3题.
教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有
什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把足球看作单位“1”,单位“1”的量是已知的,求篮球有多少个?
就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.
2.比较2、4题
教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把篮球看作单位“1”,而且单位“1”的量者是未知的,因此要设单位“1”的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.
三、巩固练习.
(一)请你根据算式补充不同的条件.
学校有苹果树30棵,________________,桃树有多少棵,
1. 2.
3. 4.
5. 6.
(二)分析下面的数量关系,并列出算式或方程.
1.校园里有柳树60棵,杨树比柳树多 ,杨树有多少棵?
2.校园里有柳树60棵,杨树比柳树少 ,杨树有多少棵?
3.校园里的杨树比柳树多 ,杨树有25棵,柳树有多少棵?
4.校园里的柳树比杨树少 ,杨树有25棵,柳树有多少棵?
四、归纳总结.
今天我们通过对分数乘、除法应用题进行比较,找到了它们之间的联系和区别,这些对于我们正确解答分数应用题有很大帮助,大家一定要掌握好.
五、板书设计
教学目标
1.通过观察、分析、改编、解答、比较,使学生进一步弄清较复杂的分数乘、除法应用题数量关系和解题思路的联系和区别,掌握解题方法。
2.培养、提高学生分析推理、解答应用题的能力。
教学重点和难点
明确比一个数多(少)几分之几的分数乘除法应用题的联系和区别,掌握解题方法。
教具准备
投影仪、投影片。
教学过程
(一)复习
1.根据关系句填空。
( )是单位“1”,苹果树除了有和梨树同样多的数量外,还多( ),苹果树是梨树的( )。
( )是单位“1”,椅子价钱是桌子价钱的( )。
椅子价钱○( )=( )
2.仿照上面例子分析关系句。
(二)导入新课
我们复习了分数乘、除法应用题的数量关系。通过上题发现,有很多题的叙述形式很相似,但解题方法却大不相同。为什么不相同呢?今天我们就来研究稍复杂的分数乘除法的应用题,对比、区别它们之间的异同点。(板书课题)
(三)讲授新课
1.出示例1。
(1)默读例题。
(2)同桌互说分析思路。理解足球是单位“1”,篮球除了有和足球
篮球的个数,用乘法计算。
(3)学生在练习本上画图列式。(组长检查)一名学生板书:
(4)反馈、订正、说出不同的列式。
(5)问:两种方法在解题思路上有什么相同点?有什么不同点?
(共同点是两种方法中都有一步是求20的几分之几是多少。不同点是:方法一是先求篮球是足球的几倍,再求足球的几倍,也就是篮球的
加上足球个数就是篮球的个数。)
2.改编上题,第一个条件不变,只变换单位“1”,即为例2。(改的文字用红粉笔)
(1)学生默读例题思考,为什么足球和篮球变换位置?
(2)同桌互说分析思路。
(3)画图、列式:(在本上做,一生板书)
方法一:解 设篮球有x个。
(4)三种解法在解题思路上有什么不同?
等于20个为等量关系列方程;方法二则是先求出足球相当于篮球的几倍,
(5)例1和例2的不同点是什么?
位“1”,用除法计算。)
3.根据图形编题,出示例3。
(1)学生默读。
(2)根据思考题讨论。
①你们所编的题谁是单位“1”?为什么以它为单位“1”?
②列式。
③问例1例3有什么相同点和不同点?
(相同点:例1、例3的单位“1”都是已知的,都是求单位“1”
(1)根据思考题小组讨论。
观察算式,你认为谁是单位“1”,为什么?
(2)学生画图、列式。(方程、算术两种方法。组长检查、辅导,一生板演。)
(3)反馈、订正。
方法一:解 设篮球有x个
(4)观察例3、例4与例2、例4的异同点。(小组讨论)
集体订正:例3和例4的单位“1”不同。例3的单位“1”是足
数是多少,根据乘法意义用乘法计算;例4的单位“1”是篮球的个数,
法意义就要用方程列式,也可根据逆运算用算术法列式。例2例4的相同点:都是把篮球看作单位“1”,篮球个数都是所求的,因此根据乘法意义,找等量关系,列方程,或根据逆运算用除法列式。不同点:例2
于足球的倍数。
(5)学生自己观察黑板的四个例题,再次观察异同点。(看题、看图、看列式。)
(6)质疑。
四、课堂总结
(略)
五、巩固练习
1.第94页中“做一做”的第1,2题。
2.第95页第1题。
课堂教学设计说明
这节课的内容是稍复杂的分数乘除法应用题的比较练习课,目的是明确数量之间的内在联系和区别,明确相比的量相当于单位“1”的几分之几或几倍,所以在教案设计上突出了分数乘除法例题的对比。在让学生独立完成例1的基础上,改变单位“1”出示例2,通过一改一编,突出了两题的区别。例3的出示是根据图形而编出来的,比直接给出例题更容易激发学生的兴趣。对思考题的讨论加深了学生对如何找单位
区别。例4的出示是根据算式编的题,使学生进一步明确了分数应用题的结构及解题思路。
教学内容:教科书第59页例4
教学目标:
使学生学会运用乘除法两步计算解决问题,培养学生观察、操作和分析的能力。
教学过程:
一、复习:
1.口算:
5×7= 45÷9= 63÷7= 18÷9=
32÷4= 56÷7= 27÷9= 6×8=
72÷9= 8×3= 35÷7= 64÷8=
9×4= 24÷3= 54÷9= 21÷7=
2.把32平均分成8份,每一份是多少?
3.56里面有几个7?
二、探究新知
1.出示第59页的例题4(课件)
(1)先认真观察第一幅图的画面,用自己的话说一说画面的内容。
(2)再认真观察第二幅图的画面,“我们这么多人,要坐多少辆呢?”这里的“我们”是指什么人?
(3)把这两幅画面连起来编一道应用题。(小组合作)
(4)小组讨论:应该如何解决这一道题?
(5)汇报讨论结果。
重点强调:应用题解答完后,要记住写单位名称和答语。
(6)独立思考:怎样列综合算式?然后在练习本上完成。
三、练习
完成教科书第60页练习十三的第1题
(1)学生先自己看图,口头编应用题
(2)学生独立分析列式解答,教师鼓励学生列综合算式
(3)全班讲评(讲评时要学生说出每一步算式的意思)
完成教科书第60页练习十三第2题
(1)让学生自己看图,口头编应用题,
(2)说出这一道题目的已知条件和问题,
(3)独立分析列式解答
(4)教师讲评,讲评时要学生说出每一步算式的意思,为什么要添上括号?
四、全课总结:
通过这节课的学习,你想说些什么?
数学除法简单应用题教学设计
教学内容:
苏教版国标本小学数学第十一册P62例5和练习十二T1—3。
教学目标:
1、使学生联系对“求一个数的几分之几是多少”的已有认识,学会列方程解答“已知一个数的几分之几是多少求这个数”的简单实际问题。
2、进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。
3、培养学生解决实际问题的能力。
教学重点:
学会列方程解答“已知一个数的几分之几是多少求这个数”的简单实际问题。
教学难点:
体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。
设计理念:
本课要使学生在探索解决问题方法的过程中,进一步培养独立思考、主动与他人合作交流、自觉检验等习惯,获得一些成功的体验,增强学好数学的信心。
教学步骤
一、导入
1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?出示:小瓶的果汁是大瓶的 。
提问:这句话表示什么?你能说出等量关系式吗?
如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁? 自己算算看。
如果知道小瓶里的果汁,怎么求大瓶中的.果汁呢?
2、揭示课题: 简单的分数除法应用题
学生猜测大、小两瓶果汁之间的数量关系。
学生口答,教师根据学生的回答进行板书:大瓶里的果汁× =小瓶里的果汁。
二、教学新知
1、教学例5
2、教学“试一试”
1、出示例5
提问: 你想怎么解决这个问题?
2、讨论交流:你是怎么想、怎么算的?
如果学生用除法计算,教师可引导讨论:为什么可以用除法计算?依据是什么?
引导学生讨论:用方程解答是怎么想的,依据是什么?
3、引导检验: =900是不是原方程的解呢,怎么检验?
(1)出示题目
(2)讨论:这里中的两个分数分别表示什么意思?
这题中的数量关系式是什么?
一盒牛奶的升数× =喝了的升数
(3)这题可以怎么解答,自己独立完成,并指名板演。
(4)交流:你是怎么解决这个问题的?
学生读题。
学生反馈解题方法。学生的方法可能有两种:
(1)用除法计算。
600÷
(2)用方程解答
解:设大瓶里有果汁 升。
× =600
学生在教材中完成解方程的过程,并指名板演。
学生反馈说明检验的方法。
学生读题,理解题意。
学生回答,根据学生的回答教师板书:
学生小结解题的方法和策略。
三、巩固练习
1、完成“练一练”。
鼓励学生用两种方法进行解答。
2、完成练习十二T1。
(1)读题,画出题目中的关键句。
(2)学生说一说“一桶油用去 ”和“黑兔是白兔的 ”各表示什么意思?
(3)引导学生说出并在书上写出数量关系式。
3、小结解题策略。
学生独立解答,之后进行交流汇报。
画出题目中的关键句
说一说各表示什么意思?
独立解答,并指名板演。
四、小结
全课总结:这节课学习了什么?你有什么收获?
五、作业
练习十二T2、3
学生练习。
教后反思:********
教学目标
1.进一步加深对分数乘、除法应用题的数量关系和内在联系的认识.明确它们的相同点和不同点.
2.掌握分数乘、除法应用题的分析、解答方法.
教学重点
训练学生分析分数应用题的数量关系,明确分数乘除法应用题的相同点和不同点.
教学难点
准确判断单位“1”,正确地解答分数应用题.
教学步骤
一、铺垫孕伏
(一)导入:我们已经学过了三种分数乘、除法应用题(板书:分数乘、除法应用题),请同学们想一想都是哪三种?解答分数乘、除法应用题的关键是什么?
(二)判断单位“1”.
1.鹅的只数是鸭的 .
2.甲的 是乙.
3.乙是甲的 .
4.男生人数的 相当于女生.
5.小齿轮的齿数占大齿轮的 .
(三)列式计算.
1.4是12的几分之几?
2.12的 是多少?
3.一个数的 是4,求这个数.
二、探究新知
(一)教学例3第(1)题
池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
1.读题并找出已知条件和问题
2.提问:应把谁看作单位“1”?是根据题中哪句话判断的?
3.画图.
4.列式解答
答:鹅的只数是鸭的 .
(二)教学例3第(2)、(3)题.
池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?
池塘里有4只鹅,正好是鸭的只数的 ,池塘里有多少只鸭?
1.画图理解题意
2.列式解答
3.集体订正
(三)小结
这三道题有什么相同点和不同点?解题关键是什么?
1.结构上
相同点:都有3个数量,即鸭的只数,鹅的只数,鹅是鸭的几分之几;
不同点:已知和未知不一样.
2.解题思路上
相同点:都要首先弄清谁作标准,把谁看作单位“1”;
不同点:根据已知、未知的变化,确定不同的解答方法.
解题关键是:正确分析题中的.数量关系,明确谁作单位“1”.
教师:分数乘除法应用题,在结构、解题思路及方法上,既有联系又有区别.我们在解
答这类应用题时,一定要认真正确分析题中的数量关系,准确判断谁作单位“1”.这样才能提高解答分数应用题的能力.
三、全课小结
这节课我们进一步学习了分数乘、除法应用题,并进行了比较.解答时,要正确地判断单位“1”,从而确定解答方法.
四、巩固练习
(一)商店运来红毛衣25包,蓝毛衣15包,蓝毛衣的包数是红毛衣的几分之几?
(二)商店运来红毛衣25包,运来蓝毛衣的包数是红毛衣的 .商店运来蓝毛衣多少包?
(三)商店运来蓝毛衣15包,正好是运来红毛衣包数的 .商店运来红毛衣多少包?
五、课后作业
(一)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?
(二)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?
(三)农场有小牛40头,是大牛头数的 .农场有大牛多少头?
六、板书设计
1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
4÷12=
答:鹅的只数是鸭的 .
2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?
12× =4(只)
答:池塘里有4只鹅.
3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?
4÷ =12(只)
答:池塘里有12只鸭.
教学目标
1.理解以和倍问题为基础的分数应用题的解题思路.会列方程解答此类应用题.
2.培养学生的迁移类推能力.
3.培养学生运用所学的知识解决生活中的实际问题的能力.
教学重点
理解应用的数量关系,找到题目中的等量关系.
教学难点
找准题中的等量关系.
教学过程
一、复习。(用含有字母的式子表示)
1、果园里有苹果树x棵,梨树的'棵数是苹果树棵数的3/4。梨树有|棵。
苹果树和梨树一共有()棵。
2、饲养小组养了黑兔a只,白兔的只数是黑兔的5倍,白兔有()只;黑兔和白兔一共有()只。
二、生活引入.
上一年,有一位学生问我|:老师,您今年有多少岁啦?我说:我和杨莹的年龄和是42岁,杨莹的年龄是我的年龄的2/5。你能算出老师的年龄是多少岁吗?那杨莹的年龄又是多少岁呢?
1.老师说:你能解决这个问题吗?通过今天知识的学习,你们就能知道了.
2.板书课题:分数除法应用题。
3、学生读题,理解题意弄清谁是单位1,画出线段图.
4、分层指导。
思考:
(1)根据我和杨莹的年龄和是42岁这个条件找到它的等量关系吗?
(2)根据杨莹的年龄是我的年龄的2/5这个条件,可以把谁设为?老师、杨莹的岁数用含有的式子怎么表示?
5.学生练习,集体订正,说明思路。
三、尝试练习
(一)出示例3
例3.饲养小组养的白兔和黑兔共有18只,其中黑兔的只数是白兔的.白兔和黑兔
各有几只?
1.读题,理解题意弄清谁是单位1,画出线段图.
2.小组回答:
(1)根据饲养小组养白兔和黑兔共有18只这个条件找到它的等量关系吗?
(2)根据黑兔的只数是白兔的这个条件,可以把谁设为?白兔、黑兔的只数用含有的式子怎么表示?
3.学生练习。
4.学生打开书本对答。(65页)
解:设白兔的只数为只,黑兔的只数是.
白兔只数+黑兔只数=总只数
答:白兔有15只,黑兔有3只.
4.教师提问:这道题还可以怎样列式?
18(1+)什么意思?
(二)写出下面应用题的等量关系,只列出含有未知数的等式,不解答.
1.商店运来苹果和沙果350筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?
2.商店运来的苹果比沙果多60筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?
教师归纳:今天学习的应用题在解答时要根据分率句确定单位1,把单位1设为.
另一个数就是几分之几.根据已知条件列出方程解答.
四、巩固练习.
(一)变式练习
小文买一支钢笔和一支圆珠笔,买钢笔的价钱比买圆珠笔多13元,圆珠笔的单价是钢笔的6/19,圆珠笔和钢笔各多少元?
(二)对比练习
1.李明家九月份用水18吨,十月份用的水是九月份的,九月份和十月份一共用水多少吨?
2.李明家九月份和十月份共用水34吨,九月份的用水吨数是十月份的,九月份、十月份各用水多少吨?
(三)选择练习
果园里苹果树和桃树共350棵,其中苹果的棵数是桃树的,桃树有多少棵?
解:设桃树有棵.
A.B.
C.D.
五、质疑总结.
1.用方程解这类题的关键是什么?
2.用算术方法解答时应注意什么?
六、板书设计
解:设老师的年龄是岁.
......老师年龄
42-30=12......杨莹的年龄
答:老师30岁,杨莹12岁.
《有理数的乘除法》 教学设计
【教学目标】
1.经历探索有理数乘法法则的过程,发展归纳、猜测等能力;
2.能运用法则进行有理数乘法运算;
3.能用乘法解决简单的实际问题.
【对话探索设计】
〖探索1
(1)商店降价销售某种产品,若每件降5元,售出60件,问与降价前比,销售额减少了多少?
(2) 商店降价销售某种产品,若每件提价-5元,售出60件,与提价前比,销售额增加了多少?
(3)商店降价销售某种产品,若每件提价a元,售出60件,问与提价前比,销售额增加了多少?
〖探索2
(1)登山队攀登一座高峰,每登高1km,气温下降6℃,登高3km后,气温下降多少?
(2)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高3km后,气温上升多少?
(3)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高-3km后,气温有什么变化?
〖探索3
(1)2(2)-2(3)2(-3)=___;(4)(-2)(-3)=____;
(5)30=_____;(6)-30=_____.
〖法则归纳
两数相乘,同号得______,异号得_______,并把________相乘.
任何数同0相乘,都得______.
〖旧课复习
1.满足什么条件的两个数互为倒数?0.2的倒数是多少?7.29的倒数呢? 的倒数呢?
2.满足什么条件的两个数互为相反数? 0.2的相反数是多少? 呢?
〖探索4
在有理数范围内,我们仍然规定:乘积是1的两个数互为倒数.
-0.2的倒数是多少?-7.29的倒数呢? - 的倒数呢?
〖练习
P38.练习
〖作业 P45习题1,2,3.
【补充练习】
1. -1的倒数是1还是-1?为什么?
2. 的倒数是______;0的倒数________.
3. _____________的两个数互为相反数._______的两个数互为倒数.
若a+b=0,则a、b互为_____数,若ab=1,则 a、b互为_____数.
4.计算:(1)(-6)4=______=____;
(2) - =_________=_____.
5.在数-5,1,-3,5,-2中任取3个相乘,哪3个数相乘的积最大? 哪3个数相乘的积最小?
1.4.1 有理数的乘法(2)
【教学目标】
1.巩固有理数乘法法则;
2.探索多个有理数相乘时,积的符号的确定方法.
【对话探索设计】
〖探索1
1.下列各式的积为什么是负的?
(1)-2345
(2)2(-3)4(-5)6789(-10).
2.下列各式的积为什么是正的?
(1)(-2)(-3)456
(2)-2345(-6)78(-9)(-10).
〖观察1
P38. 观察
〖思考归纳
几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?
(见P38.思考)
与两个有理数相乘一样,几个不等于0的有理数相乘,要先确定积的符号,再确定积的'绝对值
〖例题学习
P39.例3
〖观察2
P39. 观察
〖练习
P39.练习
〖作业
P46.7.(1),(2)(3),8,9,10,11.
〖补充练习
1.(1)若a = 3,a与2a哪个大?若 a= 0 呢? 又若 a=-3呢?
(2)a与2a哪个大?
(3)判断:9a一定大于2a;
(4)判断:9a一定不小于2a.
(5)判断:9a有可能小于2a.
2.几个数相乘,积的符号由负因数的个数决定 这句话错在哪里?
3.若ab,则acbc吗?为什么?请举例说明.
4.若mn=0,那么一定有( )
(A)m=n=0.(B)m=0,n0.(C)m0,n=0.(D)m、n中至少有一个为0.
5.利用乘法法则完成下表,你能发现什么规律?
3 2 1 0 -1 -2 -3
3 9 6 3 0 -3
2 6 2 2
1 3 2 1
-1
-2
-3
6.(1)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为-a,你认为哪家商店该彩电的降价的百分率大?为什么?
(2)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为1.2a,你认为哪家商店该彩电的降价的百分率大?为什么?
1.4.1 有理数的乘法(3)
【教学目标】
1.熟练有理数乘法法则;
2.探索运用乘法运算律简化运算.
【对话探索设计】
〖探索1
你知道乘法的交换律和结合律吗?你会用字母表示它们吗?在有理数范围内,它们仍然成立吗?
〖阅读理解
乘法交换律和结合律(见P40)
〖探索2
下列计算若按顺序依次相乘怎样算? 用运算律为什么能简化运算?
(1)25 (2) - .
〖探索3
运用运算律真的能节省时间吗?分两个大组,比一比:
计算 (-198)( ).
〖练习1
运用乘法交换律和结合律简化运算:
(1)1999125 (2) -1097 ( ).
〖探索4
1.每千克大米1.60元,第一天购进3590千克,第二天又购进6410千克,两天一共要付多少钱?你知道这道题有哪两种算法吗?哪一种简便?
2.如右图,你会用两种方法求长方形ABCD的面积吗?
〖阅读理解
(乘法对加法的)分配律(见P41)
〖例题学习
P41.例5
〖作业
P41.练习
〖补充作业
1.计算(注意运用分配律简化运算):
(1)-6(100- ); (2) (-12).
3.下列各式的积是正的还是负的?为什么?
(1) 2(-3)(-4)56789(-10);
(2)2(-3)4(-5)(-6)789(-10);
(3) 2(-3)4(-5)(-6)0789(-10);
4.下列各式的积(幂)是正的还是负的?为什么?
(1)(-3)(-3)(-3)(-3)
(2) ;
*(3) .
5.运用乘法交换律和结合律简化运算:
(1)-98 (-0.6); (2)-1999 (- ) ( )
【补充练习】
1.某地气象统计资料表明,高度每增加1000米,气温就降低大约6℃.现在地面气温是37℃,则在10000米的高空的气温是多少?
2.运用分配律化简下列的式子:
(1)例3x+9x+x (2)13x-20x+5x;
=(3+9+1)x
=13x;
(3)12-9 (4)-z-7z-8z.
3.如右图,用两种方法表示长方形ABCD的面积.
4.〖议一议如图,正方形ABCD的边长为(a+b),小明认为它的面积可以记为 ;小芳发现它的面积还可以记为 ;小勇进一步得出结论:无论a、b为何值,式子 = 总是成立的.你认为他们的看法正确吗?为什么?
《小数乘除法》优秀教学设计
教学目标:
1、使学生理解并掌握由小数点向左移动引起小数大小变化的规律;能应用规律正确口算一个小数除以10、100、1000的商。
2、在探索规律的过程中,培养学生初步的观察,比较,归纳,概括的能力和主动探索数学规律的兴趣。
教学重点:改写时应该怎样想
教学难点:改写时应该怎样想,如果位数不够,要用0补足。
教学过程:
一、复习
二、教学小数除以整数
1、学生共同研究相同的对象。
(1)、出示例5:21.5乘除以10、100、1000各是多少?
(2)学生用计算器计算21.510、100、1000的商
指名说说计算结果,并照下面的样子板书:
21.510 =2.15
21.5100 =0.215
21.51000 =0.0215
(3)引导观察、比较:每次除得的商与被除数21.5比较,小数点的位置有什么变化?
把一个小数除以10,就要把这个小数的小数点向什么方向移动几位?把一个小数除以100、1000呢?
(4)充实感性材料:以小组为单位,每组任意找2-3个小数,分别把它除以10,100,1000,看看小数点位置的变化情况。并在小组里交流。
(5)归纳:通过计算,你认为我们刚才的'发现的规律对不对?谁能用一句话说说你们发现的规律?
2、指导完成练一练
第1题:学生应用发现的规律直接写出得数。
注意:在移动小数点的位置时,如果数里原有位数不够,要用0补足,要指导学生怎样补0,弄清楚补在哪里,补几个0。如果小数点向右移动,原来数的小数部分缺少几位,可以在小数末尾添几个0;如果小数点向左移动,原来数的整数部分位数不够,可以在整数部分的最高位的前面补0。
练一练第2题:学生独立完成
再在小组里说说你是怎样想的。
练一练第3题:学生独立完成后说说算法和结果。
三、应用小数点位置的移动规律,进行计量单位的换算。
1、?教学例6
(1)、口答2000米=( )千米、5000米=( )千米
在这些简单的问题里体会只要除以1000,把小数点向左移动三位。
(2)、出示例6中的表格,让学生说说从表中能知道什么?
求喷气式飞机每秒飞行多少千米,只要怎么办?
(3)提问:500米=( )千米可以怎样想?先在小组里互相说说。
从较大单位的数量改写成较小单位的数量要乘进率和向右移动小数点,推理出较小单位的数量改写成较大单位的数量应该除以进率和向左移动小数点。
(4)组织交流,并明确:要把500米改写成以千米作单位的数,可以用500除以1000;计算500除以1000时,可以直接把500的小数点向左移动三位。
你是怎样把500的小数点向左移动三位的?愿意把你的好办法介绍给大家吗?
2.教学试一试
完成后说说你是怎样移动小数点的?
适当指导改写30米的写法
巩固练习
1、学生独立完成练习十二第4、5两题。
指导完成练习十二第6题
学生读题后提问:通过读题,你知道了什么?有谁知道为什么同样的物体在月球上会轻很多呢?适当介绍相关的知识。
3,指导完成练习十二第7题
分析数量关系,明确解决问题的思路。根据每10吨铁矿石可以炼铁6.05吨能求出什么问题?
四、全课总结(略)
教学后记
教学中要注意逆向思考,全面地掌握规律。反过来,这个规律还可以怎么说?(引导学生说说如果把一个小数的小数点分别向左移动一位、两位、三位就相当于这个小数分别除以多少?)