最小公倍数教学设计(最小公倍数教学设计及反思)

作为一名默默奉献的教育工作者,通常需要准备好一份教案,教案是备课向课堂教学转化的关节点。教案应该怎么写呢?为同学们整理了最小公倍数教学设计【优秀5篇】,希望能够在作文写作上帮助到同学们。

《最小公倍数》教案 篇一

教学内容 :

公倍数、最小公倍数的概念及求两个数的最小公倍数的方法。课本 P88~90 例 1、例 2。

教学目标

1.知识与技能:理解公倍数、最小公倍数的概念,理解、掌握求两个数最小公倍数的方法。

2.过程与方法:使学生经历探索理解公倍数、最小公倍数的概念,求两个数最小公倍数的方法,培养学生的迁移能力和分析研究问题的能力。

3.情感、态度与价值观(育人目标):在师生共同探讨的学习过程中,激发学生的学习兴趣,培养学生良好的学习习惯。

重点难点:求两个数最小公倍数的方法。

教学过程:

一、复习旧知识

1、写出下面各数的倍数

3的倍数有:()

2的倍数有:()

2、学生汇报填写结果,教师板书记录

3、说一说,你对倍数有什么理解?

学生回答

二、创设情境

出示阿凡提的故事

1、教师:请大家想一想,阿凡提是哪天去巴依老爷家的?他用的是什么办法找到这个日期的?我们如何解决这个问题?

教师:这就是我们这节课要学习的内容:最小公倍数(板书)

2、出示日期,让学生找出巴依老爷休息的日期和标出账房先生休息的日期

3、展示问题(让学生回答)

(1)老渔夫休息的日子有哪几天?4,8,12,16,20,24,28 它们都是()的倍数

(2)小渔夫休息的日子有哪几天?6,12,18,24,30

它们都是( )的倍数

(3)老渔夫和小渔夫同时休息的日子有哪几天?12,24

它们是( )和()共同的倍数

(4)我最早应在几号去拜访他们?12

4、总结问题后,导出课题:最小公倍数

5、出示问题:(通过上面的问题以及以前学过的最大公因数的概念我们可以知道)

(1)什么叫公倍数?

(2)什么叫做最小公倍数?

6、学生:回答

教师:几个数公有的`倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

三、讲授新课

1、我们已经知道了什么是最小公倍数,那么我们就一起来试一试

(1)、找出6和9的最小公倍数

6的倍数:6 ,12 ,18,24 30,36……

9的倍数:9,18,27,36……

6和9的公倍数:18,36……

6和9的最小公倍数:18

教师:同学们会找两个数的最小公倍数了吗?

学生:会

(2)求3和2的最小公倍数

全班交流并板书。

还可以这样表示

3的倍数 2的倍数

2

(3)怎样求6和8的最小公倍数?

四、通过这几题的学习,观察一下: 观察一下,两个数的公倍数和它们的最小公倍数之间有什么关系?

学生:

教师:我发现:两个数的公倍数都是它们最小公倍数的倍数

五、归纳总结:

找最小公倍数的方法

(1)先分别找出两个数的倍数

(2)再找出两个数的公倍数

(3)其中最小的一个就是它们的最小公倍数。

六:随堂练习:

1、求下列每组数的最小公倍数。

2和8 3和8 6和156和9

4和106和8 4和108和10

2、下面的说法对吗?说一说你的理由。

(1)两个数的最小公倍数一定比这两个数都大。

(2)两个数的积一定是这两个数的公倍数。

3、练习:六盘水火车站是12路和13路公交车的起点站。12路每3分钟发车一次,13路公交车每5分钟发车一次。这两路公交车同时发车以后,至少再过多久又同时发车?

七、渗透法制教育《中华人民共和国道路交通安全法》

第六十二条 行人通过路口或者横过道路,应当走人行横道或者过街设施;通过有交通信号灯的人行横道,应当按照交通

信号灯指示通行;通过没有交通信号灯、人行横道的路口,或者在没有过街设施的路段横过道路,应当在确认安全后通过。 ? 第五十一条 机动车行驶时,驾驶人、乘坐人员应当按规定使用安全带,摩托车驾驶人及乘坐人员应当按规定戴安全头盔。

?第六十六条 乘车人不得携带易燃易爆等危险物品,不得向车外抛洒物品,不得有影响驾驶人安全驾驶的行为。

问题结束:你们现在知道阿凡提是哪一天去巴依老爷家的了吗?

八:布置作业

《最小公倍数》教案 篇二

【教学内容】:

人教版五年级下册教科书第88—90页内容。

【设计理念】:

数学于生活,有作用于生活。在本堂课的教学,我把数学与生活紧密的联系在一起,从而构建一种生活化的数学课堂。让学生根据现实生活中一些能够反映公倍数、最小公倍数的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验,进而激发学生兴趣,去解决这些实际问题,真切地体会到数学与外部生活世界的联系,体会到数学的特点和价值,体会到“数学化”的真正含义,从而帮助他们获得对数学的正确认识。真正达到“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展”。

【教学目标】:

1、知识与技能:通过创设具体情境(三个情景片断)和操作活动,使学生认识并理解公倍数和最小公倍数的概念,初步了解两个数的公倍数和最小公倍数在现实生活中的'应用,会找两个数的公倍数和它们的最小公倍数。

2、过程与方法:通过自主探索解决问题的方法,使学生经历探索找两个数的公倍数和最小公倍数的过程,鼓励学生思考多样化,简洁化,进行有条理的思考。

3、情感态度价值观:在自主探索与合作交流的过程中,进一步发展与同伴的合作交流能力,获得成功的体验。使学生感受到数学于生活,体会公倍数和最小公倍数在生活中的实际价值。

【教学重点】:

1、理解公倍数与最小公倍数的概念

2、能找出两个数的公倍数与最小公倍数,会解决实际生活中的一些问题

【教学难点】:

能找出两个数的公倍数与最小公倍数,会解决实际生活中的一些问题

【教具、学具准备】:

多媒体、日历。

最小公倍数教学设计必备 篇三

教学内容:

教材第88、89页的内容及第91页练习十七的第1、2题。

教学目标:

1.理解两个数的公倍数和最小公倍数的意义。

2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。

3.培养学生抽象、概括的能力。

教学重点:

理解两个数的公倍数和最小公倍数的意义

教学难点:

自主探索并总结找最小公倍数的方法。

教学具准备:

多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。

教学方法:

小组合作谈话法

教学过程:

一、创设情景,生成问题:

前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。

二、探索交流,解决问题

1、在数轴上标出4、6的倍数所在的点。

拿出老师课前发的画有两条直线的纸。

在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。

2、引入公倍数。

(l)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。

(2)观察:从4和6的倍数中你发现了什么?

(3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。

(4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)

说说看,什么叫两个数的公倍数?

3、用集合图表示。

如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。

4、引人最小公倍数。

学生汇报后问:

(1)为什么三个部分里都要添上省略号?

(2)4和6的公倍数还有哪些?有没有最大公倍数?

(3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)

4的倍数6的倍数

4,8,

16,20,…

12,24,

4和6的公倍数:

5、引出例1。

前面学习公因数和最大公因数时,我们研究了用正方形地砖铺地的实际问题。今天,我们再来研究一个用长方形墙砖铺成正方形的实际问题出示例1。

(1)操作探究。

学生任意选择操作方式。

①用长方形学具拼正方形。

②在印有格子的纸上面画出用长方形墙砖拼成的正方形。边操作、边思考:拼成的正方形边长是多少?与长方形墙砖的长和宽有什么关系?

(2)反馈并揭示意义。

①请选用第一种操作方式的学生上来演示拼的过程,并说一说拼出的正方形边长是多少。老师根据学生的演示板书正方形边长,如6dm

②请选第二种操作方式的学生汇报,老师让多媒体课件闪现边长为6dm、12dm……的正方形。

③正方形边长还有可能是几?你是怎样知道的?

④观察所拼成的边长是6dm、12dm、18dm…的正方形与墙砖的长3dm、宽2dm的关系。体会正方形的边长正好是3和2的公倍数,而6是这两个数的最小公倍数。

思考:两个数的公倍数与最小公倍数之间有什么关系?(最小公倍乘2乘3…就是这两个数的其他公倍数。)

⑤阅读教材第88、89页的内容,进一步体会公倍数和最小公倍数的实际意义。

三、巩固应用,内化提高

(1)画一画,说一说。

小松鼠一次能跳2格,小猴一次能跳3格,它们从同一点往前跳,跳到第几格时第一次跳到同一点,第2次跳到同一点是在第几格?第3次呢?

引导学生将本题与例1比较:内容不同,但数学意义相同,都是求2和3的公倍数和最小公倍数。

(2)完成教材第89页的“做一做”。

学生独立思考,写出答案并交流:4人一组正好分完,说明总人数是4的倍数;6人一组正好分完,说明总人数是6的倍数。总人数在40以内,所以是求40以内4和6的公倍数。

(3)独立完成教材第91页练习十七的第2题。

(4)完成教材第91页练习十七的第1题。

指导学生找到写出两个数的公倍数的简便方法,先找出两个数的最小公倍数,再用最小公倍数乘2、乘3.得到其他公倍数。

四、回顾整理、反思提升。

通过今天的学习,你有什么收获?

本节课我们共同研究了公倍数和最小公倍数的意义,并通过解决铺长方形地砖的问题,了解了两个数的公倍数和最小公倍数在生活中的应用。

《最小公倍数》教案 篇四

教学内容:教科书五年级上册第81——82页及练习。

教学目标:

1、在异分母分数大小比较的活动中,经历认识最小公倍数和用短除法求最小公倍数的过程。

2、了解最小公倍数,学会用短除法求两个数的最小公倍数。

3、能积极主动参与数学活动,获得积极的学习体验,提高对数学的兴趣。

教学重点:学会用短除法求两个数的最小公倍数。

教学过程:

一、课前活动——对口令

师:上课前我们先来做个游戏——对口令,老师说一个数请你对出它的倍数1、对9、12的倍数。

2、对出一个数,它既是2的倍数也是3的倍数。

二、创设情境,感知概念

1、两个数的公倍数和最小公倍数的概念教学

师:同学们,我们每周都会上微机课,老师想了解一下同学打字情况,那谁愿意介绍一下你一分钟能打多少个字呢?

请几位学生说说自己一分钟能打多少个字。学生打字的速度各有不同,教师可进行激励性。如:真不错,你一分钟能打这么多字;打得慢了点,没关系,只要你经常练习,一定会越来越快。

师:你们知道吗?我们的小伙伴红红和聪聪都是打字的能手,他俩打同样一份稿件进行了一次打字比赛。

出示教材上的情境图。

师:从两个人的对话中了解到哪些数学信息?

生1:聪聪用了5/6小时。

生2:红红用3/4小时就打完了。

师:他们两个人谁打得快呢?请同学们当裁判,通过比较两个分数的大小来解决这个问题。

学生独立思考并比较,教师巡视,了解通分的方法和结果。师:谁来说说是怎样比较的?谁打得快呢?

师:谁来说说是怎样比较的?谁打得快呢?

学生交流,教师进行板书。

生1:因为6×4=24,我先把和进行通分,都化成分母是24的分数,然后再进行比较。

5/6=5×4/6×4=20/24,3/4=3×6/4×6=18/24

20/24>18/24,所以5/6>3/4。

红红打得快。

生2:我也认为红红打得快。但是我把5/6和3/4进行通分,都化成分母是12的分数,然后再进行比较。

5/6=5×2/6×2=10/12,3/4=3×3/4×3=9/12

10/12>9/12,所以5/6>3/4。

……

如果学生只有分母是24或12的一种方法,教师要作为参与者介绍另一种方法。

师:现在请大家观察这两种方法,你发现有什么相同的地方和不同的地方?

学生可能有不同的表达方式,概括一下,应有如下回答:

●相同的地方

(1)这两种方法都是先把5/6和3/4进行通分后,再比较大小的。

(2)两种方法通分时用的分母12和24都是6和4的公倍数。

教学预设

●不同的地方

(1)第一种方法,通分时用两个分数分母的积24作分母,第二种方法,通分时用4和6的公倍数12作分母。

(2)24是12的2倍。

……

师:同学们观察得非常仔细,两种通分方法中,12和24都是6和4的公倍数。那么,4和6的公倍数还有哪些?请同桌的同学合作,在老师发给你们的椭圆形纸片上分别写出50以内4和6的倍数,再圈出它们的`公倍数。

学生自己找,教师巡视。

师:说说你们是怎么找的?4和6的公倍数都有哪些呢?生:我先找出4和6各自的倍数

4的倍数有:4,8,12,16,20,24,28,32,36,40,44,48,

师:如果让你继续找下去,4的倍数还有没有?用什么表示?

生:还有无数个,用省略号表示。

生:6的倍数有:6,12,18,24,30,36,42,48,

师:如果让你继续找下去,6的倍数还有没有?用什么表示?

生:还有无数个,也用省略号表示。

生:然后找4和6的公倍数有:12,24,36,48,……。

教师根据学生的回答出示课件。

师:观察我们找到的50以内6和4的这几个公倍数,想一想,如果继续找下去,48后面一个公倍数是几?说一说你是怎样判断的?

学生可能会说:

生:继续找下去,48后面一个公倍数是60。因为每两个公倍数之间都相差12,48加12等于60。

师:60后面还有没有?还有多少个?

生:还有无数个,用省略号表示。

师:有没有最大公倍数?

生:没有最大公倍数。因为4和6的公倍数有无数个,找不到最大的一个。

师:同学们说的很好。现在再来观察4和6的这些公倍数,没有最大的我们能找到一个最小的谁?

生:12。

师:还有比12小的公倍数吗?

生:没有了。

师:我们给它起个名字叫做这两个数的最小公倍数。这节课我们就来重点研究一下最小公倍数。(教师板书课题:最小公倍数)

师:我们对公倍数和最小公倍数有了一些认识,谁能用自己的话说说什么是公倍数?什么是最小公倍数?同桌的同学现互相说说。

学生之间互相交流。

教师引导学生出概念(出示课件)让学生读一读。

师:刚才我们找了4和6的最小公倍数,现找了4的倍数,又找了6的倍数,最后找到4和6的最小公倍数。这种方法太麻烦,其实有一种更简便的方法——短除法(教师边说边板书用短除法求4和6的最小公倍数)

用短除法求两个数的最小公倍数与上学期我们学过的求两个数的最大公因数的书写方式一样。

板书设计:

《最小公倍数》教案 篇五

教学要求在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的。

教学重点掌握求两个数的的方法。

教学难点正确、熟练地求出特殊情况下两个数的。

教学过程

一、创设情境

1.口算练习:将练习十五的第五题做在书上,做完后集体修订正。

2.回答问题:什么是公倍数?什么是是?

3.求24和32的。

4.说说下面每组中的两个数有什么关系?

12和36 4和5

二、揭示课题

我们已经学会求两个数的,这节课我们将继续学习求特殊情况下两个数的。(板书课题:求特殊情况下两个数的)

三、探索研究

1.教学例3

(1)先让学生用上节课学的方法分别求出这两组数的。

(2)观察结果:通过这两组数的,你发现了什么?

(3)归纳方法:先让学生讲,再指导学生看教材第73页的结论。

(4)尝试练习。

做教材第74页下面的做一做,先让学生判断每组中两个数的关系,再解答出来集体订正。

四、课堂实践

1、做练习十五的第6题,先让学生写,再让学生说,最后集体订正。

2、做练习十五的第7题,先让学生观察每组中两个数的关系,再让学生正确、熟练地说出它们的,并订正。

3、做练习十五的第9题。先让学生独立判断,对的打,错的打,再点几名学生讲打或的'理由。

五、课堂小结

学生小结今天学习的内容、方法。

六、课堂作业

做练习十五的第8题。

课题三:求三个数的

教学要求使学生在理解的基础上学会求三个数的。

教学重点求三个数的与求两个数的的区别。

教学难点会求三个数的。

教学过程

一、创设情境

求下面各组数的。(学生做完后,集体订正时,点几名学生说怎样求两个数的)

5和8 7和28 12和16

二、揭示课题

我们已经学会求两个数的,怎样求三个数的呢?现在我们一起来学习。(板书课题:求三个数的)

三、探索研究

1.教学例4。

(1)请同学们把8、12、和30分解质因数,并指出公有质因数是哪些?(教师根据学生的回答板书如下)

8=222

12=223

30=2 35

(2)分组讨论。

①8、12、30的必须包含哪些质因数?

②如果先取这三个数公有质因数1个2,再取每两个数公有质因数1个2和1个3,最后取各自独有的质因数2和5 ,(22235)这些质因数是否包含了8、12和30所有的质因数?

③8、12和30的是多少?

(3)归纳:8、12和30的,必须包含这三个数全部公有的质因数(1个2)和每两个数公有的质因数(1个2和1个3)以及各自独有的(2和5),这些质因数积(22235=120)就是8、12和30的。

(4)求三个数的的方法。

求三个数的与求两个数的的方法大同小异。(板书短除式)

8 12 30

①先用什么数作除数去除?

②再用什么数作除数去除?(重点指导:另一个数要移下来)

③一直除到什么时候为止?

④最后怎样做就可以求出三个数的?

(5)比较求三个数的与求两个数的有什么不同?(先可让学生说,然后老师归纳)

相同点:都是用短除的形式分解质因数,都是把所有的除数和商连乘起来。

不同点:求两个数的时,除到两个商是互质数这止;而求三个数的时,要先用三个数公有的质因数去除,再用两个数的公有的质因数去除,一直除到三个商中每两个数都是互质数(两两互质)为止。

四、课堂实践

1.做教材第75页的做一做。

2.做练习十五的第12题,先让学生看,再指出它的错误,使学生明确:错在三个数公有的质因数还没有找完。在用6除时把8移下来,就等于在里多取了一个质因数2。

3.做练习十五的第13题,学生口答。

五、课堂小结

学生小结今天学习的内容、方法。

六、课堂作业

1.做练习十五的第10、11、14题。

2.有兴趣、有余力的学生可做练习十五的第21*~23*题。

课题四:最大公约数和的比较

教学要求通过比较,使学生进一步分清求最大公约数和的相同点和不同点,并能正确地求出几个数的最大公约数和。

教学重点比较求两个数的最大公约数和的不同点。

教学用具在投影片上画好教材第80页的表格(留空备用)

教学过程

一、创设情境

1.做练习十六的第1题,先让学生将能被2整除的数用△圈起来;能被3整除的数用○圈起来;能被5整除的数用□圈起来,做在书上,集体订正。

2.很快说下面每组数的。

5和7 9和45 9和12 2、3和11 8、10和40 3、4和6

二、探索研究

1.教学例5。

(1)出示例5(点2名学生在黑板上做,其余的学生做在练习本上):

28 42 28 42

7 14 6 7 14 6

2 3 2 3

28和42的最大公约数是: 42和28的是:

27=14 2723=84

(2)揭示课题:我们现在来比较一下,求两个数的最大公约数和的方法有什么相同点和不同点。(板书课题:最大公约数和的比较)

(3)出示留空的表格。

先让同桌的学生互相说说,再点几名学生谈自己的看法,最后归纳填表。

(4)看表上的不同点回答。

为什么它们在计算时不相同?

使学生明确:①因为两个数最大公约数只包含这两个数全部公有质因数,所以只把这两个数全部公有质因数连乘起来,也就是把所有的除数乘起来,就得到它们的最大公约数。②而两个数的不仅包含这两个数全部公有的质因数,还包含它们各自独有的质因数,所以要把这两个数全部公有的质因数以及各自独有的质因数连乘起来,也就是把所有的除数和商乘起来,就得到它们的。

(5)尝试练习。

做教材第80页的做一做,然后点几名学生说一说是怎样做的。

三、课堂实践

做练习十六的第2题。

四、课堂小结

学生小结求两个数的最大公约数和的异同点。

五、课堂作业 。做练习十六的3、4、5、6*题。

热门教案

学诗词

学名句